File size: 16,282 Bytes
d32f7f0 09a0bd6 0d8b94f 09a0bd6 d32f7f0 09a0bd6 b3e7614 d32f7f0 09a0bd6 d32f7f0 120c986 09a0bd6 d32f7f0 b3e7614 d32f7f0 09a0bd6 d32f7f0 09a0bd6 45ea980 d32f7f0 45ea980 d32f7f0 09a0bd6 d32f7f0 45ea980 d32f7f0 b3e7614 d32f7f0 09a0bd6 b3e7614 09a0bd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
from transformers import TFPreTrainedModel, PreTrainedTokenizer, BatchEncoding
from tensorflow.keras.models import Model, load_model, Sequential
from tensorflow.keras.layers import Layer, Dense, concatenate, Input, add, Dropout, LayerNormalization, MultiHeadAttention, Embedding
import tensorflow as tf
import numpy as np
from typing import Dict
import re
import unicodedata
from .configuration_bilma import BilmaConfig
# copied from preprocessing.py
BLANK = ' '
RE_OPS = re.I | re.M | re.S
RE_USR = re.compile(r"""@\S+""", RE_OPS)
RE_TAG = re.compile(r"""#\S+""", RE_OPS)
RE_URL = re.compile(r"""(http|ftp|https)://\S+""", RE_OPS)
RE_NUM = re.compile(r"""[-+]?\d+\.?\d*""", RE_OPS)
SYMBOLS_ = "()[]¿?¡!{}~<>|"
SYMBOLS = set(";:,.@\\-\"/" + SYMBOLS_)
# ------------------
# Class declaration
# ------------------
class TFBilma(TFPreTrainedModel):
config_class = BilmaConfig
main_input_name = "input_ids"
#base_model_prefix = "bilma"
def __init__(self, config):
self.seq_max_length = config.seq_max_length
self.include_top = config.include_top
self.add_head = config.add_head
super().__init__(config)
self.model = bilma(num_enc=config.num_hidden_layers,
embed_dim=config.hidden_size,
max_length=config.seq_max_length,
num_heads=config.num_attention_heads,
ff_dim=config.hidden_size,
vocab_size=config.vocab_size,
rate=config.hidden_dropout_prob,
include_top = config.include_top,
add_head = config.add_head,
pooling = config.pooling)
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
dummies = {}
for key, spec in self.input_signature.items():
dummy_shape = [dim if dim is not None else 2 for dim in spec.shape]
if spec.shape[0] is None:
dummy_shape[0] = 1
dummies[key] = tf.ones(shape=dummy_shape, dtype=spec.dtype)
return dummies
@property
def input_signature(self) -> Dict[str, tf.TensorSpec]:
sig = {}
sig["input_ids"] = tf.TensorSpec([None, self.seq_max_length], tf.int32, name="input_ids")
return sig
def call(self, inputs):
if isinstance(inputs, Dict) or isinstance(inputs, BatchEncoding):
ins = tf.cast(inputs["input_ids"], tf.float32)
else:
ins = inputs
if self.include_top:
output = {"logits":self.model(ins)}
else:
if self.add_head is None:
output = {"last_hidden_state":self.model(ins)}
else:
output = {"label":self.model(ins)}
return output
def get_loss_function():
return loss_funtion()
def get_acc_function():
return accuracy_function()
# copied from bilma_model.py
# --------------------------
def loss_function(ignore_id=0):
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none')
def loss(real, pred):
mask = tf.math.logical_not(tf.math.equal(real, ignore_id))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask
sum_ = tf.reduce_sum(mask,axis=1)
loss_ = tf.math.divide_no_nan(tf.reduce_sum(loss_, axis=1), sum_)
return loss_
return loss
def accuracy_function(ignore_id=0):
def acc_mlm(real, pred):
accuracies = tf.equal(tf.cast(real, tf.int64), tf.argmax(pred, axis=2))
mask = tf.math.logical_not(tf.math.equal(real, ignore_id))
accuracies = tf.math.logical_and(mask, accuracies)
accuracies = tf.cast(accuracies, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
return tf.math.divide_no_nan(tf.reduce_sum(accuracies), tf.reduce_sum(mask))
return acc_mlm
def mean_vectors(inputs, enc_vectors, max_length):
p = tf.where(inputs == 3)
pos = tf.transpose(p)[1]
C = tf.sequence_mask(pos, maxlen=max_length, dtype=tf.float32)
C = tf.reshape(C, (-1, max_length, 1))
S = tf.reduce_sum(enc_vectors * C, 1)
x = S / tf.expand_dims(tf.cast(pos, tf.float32), (1))
return x
def mean_diff_vectors(inputs, enc_vectors, max_length):
p = tf.where(inputs == 3)
pos = tf.transpose(p)[1]
C = tf.sequence_mask(pos, maxlen=max_length, dtype=tf.float32)
C = tf.reshape(C, (-1, max_length, 1))
vecs = enc_vectors * C
S = tf.reduce_sum(vecs, 1)
mu = S / tf.expand_dims(tf.cast(pos, tf.float32), (1))
x = tf.reduce_sum(mu - vecs, 1) / tf.expand_dims(tf.cast(pos, tf.float32), (1))
return x
def max_vectors(inputs, enc_vectors, max_length):
p = tf.where(inputs == 3)
pos = tf.transpose(p)[1]
C = tf.sequence_mask(pos, maxlen=max_length, dtype=tf.float32)
C = tf.reshape(C, (-1, max_length, 1))
x = tf.reduce_max(enc_vectors * C, 1)
return x
def cls_vectors(inputs, enc_vectors, max_length):
x = tf.squeeze(enc_vectors[:, 0:1, :], axis=1)
return x
def bilma(num_enc=6, embed_dim=300, max_length=50, num_heads=6, ff_dim=512, vocab_size=9739, rate=0.1, include_top=True, add_head=None, pooling=None):
capt_inputs_ids = Input(shape=(max_length, ), name='input_ids')
capt_embedding = Embedding(vocab_size, embed_dim, mask_zero=False, name="bilma/embedding")
capt_inputs = capt_embedding(capt_inputs_ids)
enc = Encoder(num_enc, embed_dim, max_length, num_heads, ff_dim, rate=rate, name="bilma/encoder")
enc_output = enc(capt_inputs)
if include_top:
fin_output = Dense(vocab_size, use_bias=True, name="bilma/dense_final")(enc_output)
else:
x = enc_output
if pooling == "mean":
x = mean_vectors(capt_inputs_ids, x, max_length)
elif pooling == "cls":
x = cls_vectors(capt_inputs_ids, x, max_length)
elif pooling == "max":
x = max_vectors(capt_inputs_ids, x, max_length)
if add_head is None:
fin_output = x
else:
for i, m in enumerate(add_head[:-1]):
x = Dense(m, use_bias=True, activation="relu", name=f"bilma/dense_ex_{i}")(x)
fin_output = Dense(add_head[-1], use_bias=True, activation="softmax", name=f"bilma/dense_ex_final")(x)
caption_model = Model(inputs=capt_inputs_ids, outputs=fin_output, name="bilma_model")
return caption_model
def load(model_file):
custom_objects={"EncoderBlock": EncoderBlock,
"Encoder": Encoder,
"loss": loss_function(),
"acc_mlm":accuracy_function(),
}
return load_model(model_file, custom_objects=custom_objects)
#
# Copied from transformer_text.py
# -------------------------------
class EncoderBlock(Layer):
def __init__(self, layer_num, patch_dim, num_heads, ff_dim, rate=0.1, **kwargs):
super(EncoderBlock, self).__init__(**kwargs)
self.ln = layer_num
self.p_d = patch_dim
self.n_h = num_heads
self.f_d = ff_dim
self.rate = rate
self.att = MultiHeadAttention(num_heads=num_heads, key_dim=patch_dim, name=f"bilma/MHA_{layer_num}")
self.ffn = Sequential(
#[Conv1D(ff_dim, kernel_size=1, activation=tf.nn.gelu),
# Conv1D(patch_dim, kernel_size=1),]
[Dense(ff_dim, activation=tf.nn.gelu, name=f"bilma/dense1_{layer_num}"),
Dense(patch_dim, name=f"bilma/dense2_{layer_num}")]
)
#self.layernorm0 = LayerNormalization(epsilon=1e-6)
self.layernorm1 = LayerNormalization(epsilon=1e-6, name=f"ln1_{layer_num}")
self.layernorm2 = LayerNormalization(epsilon=1e-6, name=f"ln2_{layer_num}")
self.dropout1 = Dropout(rate)
self.dropout2 = Dropout(rate)
def get_config(self):
config = super(EncoderBlock, self).get_config()
config.update({"layer_num":self.ln, "patch_dim":self.p_d, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
return config
def call(self, inputs, training=False):
#inputs = self.layernorm0(inputs)
attn_output = self.att(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(add([inputs, attn_output]))
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(add([out1, ffn_output]))
class DecoderBlock(Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1, **kwargs):
super(DecoderBlock, self).__init__(**kwargs)
self.e_d = embed_dim
self.n_h = num_heads
self.f_d = ff_dim
self.rate = rate
self.att1 = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
self.att2 = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
self.ffn = Sequential(
#[Conv1D(ff_dim, kernel_size=1, activation=tf.nn.gelu),
# Conv1D(embed_dim, kernel_size=1),]
[Dense(ff_dim, activation=tf.nn.gelu),
Dense(embed_dim),]
)
self.layernorm1 = LayerNormalization(epsilon=1e-6)
self.layernorm2 = LayerNormalization(epsilon=1e-6)
self.dropout1 = Dropout(rate)
self.dropout2 = Dropout(rate)
self.dropout3 = Dropout(rate)
def get_config(self):
config = super(DecoderBlock, self).get_config()
config.update({"embed_dim":self.e_d, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
return config
def call(self, inputs, encoder_output, look_ahead_mask, padding_mask, training=None):
y, attn_output1 = self.att1(inputs, inputs, attention_mask=look_ahead_mask, return_attention_scores=True)
y = self.dropout1(y, training=training)
y = add([inputs, y])
out1 = self.layernorm1(y)
y, attn_encoder = self.att2(out1, encoder_output, attention_mask=padding_mask, return_attention_scores=True)
y = self.dropout2(y, training=training)
y = add([out1, y])
out2 = self.layernorm1(y)
ffn_output = self.ffn(out2)
ffn_output = self.dropout3(ffn_output, training=training)
final_output = self.layernorm2(out2 + ffn_output)
return final_output, attn_output1, attn_encoder
class Encoder(Layer):
def __init__(self, n, embed_dim, max_length, num_heads, ff_dim, rate=0.1, **kwargs):
super(Encoder, self).__init__(**kwargs)
self.n = n
self.embed_dim = embed_dim
self.max_length = max_length
self.n_h = num_heads
self.f_d = ff_dim
self.rate = rate
self._layers = [EncoderBlock(i, embed_dim, num_heads, ff_dim, rate=0.1, name=f"enc_block_{i}") for i in range(n)]
self.pe = positional_encoding(self.max_length, self.embed_dim)
def get_config(self):
config = super(Encoder, self).get_config()
config.update({"n": self.n, "embed_dim":self.embed_dim, "max_length": self.max_length, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
return config
def call(self, x, training=False):
x *= tf.math.sqrt(tf.cast(self.embed_dim, tf.float32))
x = x + self.pe[:, :tf.shape(x)[1], :]
for layer in self._layers:
x = layer(x, training)
return x
class Decoder(Layer):
def __init__(self, n, embed_dim, max_length, num_heads, ff_dim, rate=0.1, **kwargs):
super(Decoder, self).__init__(**kwargs)
self.n = n
self.embed_dim = embed_dim
self.max_length = max_length
self.n_h = num_heads
self.f_d = ff_dim
self.rate = rate
self._layers = [DecoderBlock(embed_dim, num_heads, ff_dim, rate=0.1) for _ in range(n)]
self.pe = positional_encoding(self.max_length, self.embed_dim)
def get_config(self):
config = super(Decoder, self).get_config()
config.update({"n": self.n, "embed_dim":self.embed_dim, "max_length": self.max_length, "num_heads":self.n_h, "ff_dim":self.f_d, "rate":self.rate})
return config
def call(self, x, encoder_output, look_ahead_mask, padding_mask, training):
x *= tf.math.sqrt(tf.cast(self.embed_dim, tf.float32))
x = x + self.pe[:, :tf.shape(x)[1], :]
for layer in self._layers:
x, self_att, enc_att = layer(x, encoder_output, look_ahead_mask, padding_mask, training)
return x
# =========================================
# M A S K S
# =========================================
def create_padding_mask(seq):
"""
For self-attention
seq shape(bs, max_length, emb_dim)
output shape (bs, max_length, max_length)
"""
mask = tf.cast(tf.not_equal(seq, 0), tf.bool)
mask = tf.reduce_any(mask, 2)
mask = tf.repeat(mask, seq.shape[1], 0)
mask = tf.reshape(mask, (-1,seq.shape[1], seq.shape[1]))
return tf.cast(mask, tf.float32)
def create_cross_padding_mask(seq, target_seq):
"""
For cross-attention
seq shape(bs, k, image_features)
target_seq(bs, max_length, emb_dim)
output shape (bs, max_length, k)
"""
mask = tf.cast(tf.not_equal(target_seq, 0), tf.bool)
mask = tf.reduce_any(mask, 2)
mask = tf.repeat(mask, seq.shape[1], 0)
mask = tf.reshape(mask, (-1, tf.shape(seq)[1], tf.shape(target_seq)[1]))
mask = tf.transpose(mask, [0, 2, 1])
return mask
def create_look_ahead_mask(seq):
"""
seq shape(bs, max_length, emb_dim)
output 2D matrix of shape (bs, max_length, max_length) with ones on the diagonal and below.
"""
size = seq.shape[1]
mask = tf.linalg.band_part(tf.ones((size, size)), -1, 0)
mask = tf.expand_dims(mask, 0)
mask = tf.repeat(mask, tf.shape(seq)[0], 0)
return mask
def create_masks(seq, target_seq):
decoder_mask = create_padding_mask(target_seq)
decoder_mask *= create_look_ahead_mask(target_seq)
cross_att_mask = create_cross_padding_mask(seq, target_seq)
return decoder_mask, cross_att_mask
def create_masks_looking_ahead(seq, target_seq):
decoder_mask = create_padding_mask(target_seq)
cross_att_mask = create_cross_padding_mask(seq, target_seq)
return decoder_mask, cross_att_mask
# =========================================
# P O S I T I O N A L E N C O D I N G
# =========================================
def get_angles(pos, i, d_model):
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
return pos * angle_rates
@tf.autograph.experimental.do_not_convert
def positional_encoding(position, d_model):
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
np.arange(d_model)[np.newaxis, :],
d_model)
# apply sin to even indices in the array; 2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# apply cos to odd indices in the array; 2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)
class PatchEncoder(Layer):
def __init__(self, num_patches, projection_dim, **kwargs):
super(PatchEncoder, self).__init__(**kwargs)
self.num_patches = num_patches
self.projection_dim = projection_dim
self.projection = Dense(units=projection_dim)
self.position_embedding = Embedding(
input_dim=num_patches, output_dim=projection_dim
)
def get_config(self):
config = super(PatchEncoder, self).get_config()
config.update({"num_patches": self.num_patches, "projection_dim":self.projection_dim})
return config
def call(self, patch):
positions = tf.range(start=0, limit=self.num_patches, delta=1)
encoded = self.projection(patch) + self.position_embedding(positions)
return encoded
|