from transformers import PretrainedConfig class BilmaConfig(PretrainedConfig): model_type = "bilma" def __init__( self, weights="MX", include_top = True, include_head = None, num_attention_heads: int = 4, num_hidden_layers: int = 2, seq_max_length: int = 280, hidden_size: int = 512, vocab_size: int = 29025, hidden_dropout_prob: float = 0.1, **kwargs, ): countries = ["MX"] if weights not in countries: raise ValueError(f"`weights` must be one of {countries}, got {weights}.") if include_head is not None and include_top == True: raise ValueError(f"To include a head, 'include_top' must be False") if weights is not None: self.weights = weights self.include_top = include_top self.include_head = include_head self.num_attention_heads = 4 self.num_hidden_layers = 2 self.seq_max_length = 280 self.hidden_size = 512 self.vocab_size = 29025 self.hidden_dropout_prob = 0.1 super().__init__(**kwargs) return self.weights = weights self.include_top = include_top self.include_head = include_head self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.seq_max_length = seq_max_length self.hidden_size = hidden_size self.vocab_size = vocab_size self.hidden_dropout_prob = hidden_dropout_prob super().__init__(**kwargs)