Update README.md
Browse files
README.md
CHANGED
@@ -1,198 +1,90 @@
|
|
1 |
---
|
2 |
library_name: diffusers
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
-
# Model Card for Model ID
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
[More Information Needed]
|
90 |
-
|
91 |
-
|
92 |
-
#### Training Hyperparameters
|
93 |
-
|
94 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
-
|
96 |
-
#### Speeds, Sizes, Times [optional]
|
97 |
-
|
98 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
-
|
100 |
-
[More Information Needed]
|
101 |
-
|
102 |
-
## Evaluation
|
103 |
-
|
104 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
-
|
106 |
-
### Testing Data, Factors & Metrics
|
107 |
-
|
108 |
-
#### Testing Data
|
109 |
-
|
110 |
-
<!-- This should link to a Dataset Card if possible. -->
|
111 |
-
|
112 |
-
[More Information Needed]
|
113 |
-
|
114 |
-
#### Factors
|
115 |
-
|
116 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
-
|
118 |
-
[More Information Needed]
|
119 |
-
|
120 |
-
#### Metrics
|
121 |
-
|
122 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
-
|
124 |
-
[More Information Needed]
|
125 |
-
|
126 |
-
### Results
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
#### Summary
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
## Model Examination [optional]
|
135 |
-
|
136 |
-
<!-- Relevant interpretability work for the model goes here -->
|
137 |
-
|
138 |
-
[More Information Needed]
|
139 |
-
|
140 |
-
## Environmental Impact
|
141 |
-
|
142 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
-
|
144 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
-
|
146 |
-
- **Hardware Type:** [More Information Needed]
|
147 |
-
- **Hours used:** [More Information Needed]
|
148 |
-
- **Cloud Provider:** [More Information Needed]
|
149 |
-
- **Compute Region:** [More Information Needed]
|
150 |
-
- **Carbon Emitted:** [More Information Needed]
|
151 |
-
|
152 |
-
## Technical Specifications [optional]
|
153 |
-
|
154 |
-
### Model Architecture and Objective
|
155 |
-
|
156 |
-
[More Information Needed]
|
157 |
-
|
158 |
-
### Compute Infrastructure
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
#### Hardware
|
163 |
-
|
164 |
-
[More Information Needed]
|
165 |
-
|
166 |
-
#### Software
|
167 |
-
|
168 |
-
[More Information Needed]
|
169 |
-
|
170 |
-
## Citation [optional]
|
171 |
-
|
172 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
-
|
174 |
-
**BibTeX:**
|
175 |
-
|
176 |
-
[More Information Needed]
|
177 |
-
|
178 |
-
**APA:**
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
## Glossary [optional]
|
183 |
-
|
184 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
## More Information [optional]
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## Model Card Authors [optional]
|
193 |
-
|
194 |
-
[More Information Needed]
|
195 |
-
|
196 |
-
## Model Card Contact
|
197 |
-
|
198 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: diffusers
|
3 |
+
pipeline_tag: text-to-video
|
4 |
+
tags:
|
5 |
+
- animatediff
|
6 |
---
|
7 |
|
|
|
8 |
|
9 |
+
AnimateDiff is a method that allows you to create videos using pre-existing Stable Diffusion Text to Image models.
|
10 |
+
|
11 |
+
It achieves this by inserting motion module layers into a frozen text to image model and training it on video clips to extract a motion prior.
|
12 |
+
These motion modules are applied after the ResNet and Attention blocks in the Stable Diffusion UNet. Their purpose is to introduce coherent motion across image frames. To support these modules we introduce the concepts of a MotionAdapter and UNetMotionModel. These serve as a convenient way to use these motion modules with existing Stable Diffusion models.
|
13 |
+
|
14 |
+
SparseControlNetModel is an implementation of ControlNet for [AnimateDiff](https://arxiv.org/abs/2307.04725).
|
15 |
+
|
16 |
+
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
|
17 |
+
|
18 |
+
The SparseCtrl version of ControlNet was introduced in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
|
19 |
+
|
20 |
+
The following example demonstrates how you can utilize the motion modules and sparse controlnet with an existing Stable Diffusion text to image model.
|
21 |
+
|
22 |
+
<table align="center">
|
23 |
+
<tr>
|
24 |
+
<center>
|
25 |
+
<b>closeup face photo of man in black clothes, night city street, bokeh, fireworks in background</b>
|
26 |
+
</center>
|
27 |
+
</tr>
|
28 |
+
<tr>
|
29 |
+
<td>
|
30 |
+
<center>
|
31 |
+
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-firework.png" alt="closeup face photo of man in black clothes, night city street, bokeh, fireworks in background" />
|
32 |
+
</center>
|
33 |
+
</td>
|
34 |
+
<td>
|
35 |
+
<center>
|
36 |
+
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-sparsectrl-rgb-result.gif" alt="closeup face photo of man in black clothes, night city street, bokeh, fireworks in background" />
|
37 |
+
</center>
|
38 |
+
</td>
|
39 |
+
</tr>
|
40 |
+
</table>
|
41 |
+
|
42 |
+
```python
|
43 |
+
import torch
|
44 |
+
|
45 |
+
from diffusers import AnimateDiffSparseControlNetPipeline
|
46 |
+
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
|
47 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
48 |
+
from diffusers.utils import export_to_gif, load_image
|
49 |
+
|
50 |
+
|
51 |
+
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
|
52 |
+
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
|
53 |
+
controlnet_id = "guoyww/animatediff-sparsectrl-rgb"
|
54 |
+
lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
|
55 |
+
vae_id = "stabilityai/sd-vae-ft-mse"
|
56 |
+
device = "cuda"
|
57 |
+
|
58 |
+
motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)
|
59 |
+
controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)
|
60 |
+
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
|
61 |
+
scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
62 |
+
model_id,
|
63 |
+
subfolder="scheduler",
|
64 |
+
beta_schedule="linear",
|
65 |
+
algorithm_type="dpmsolver++",
|
66 |
+
use_karras_sigmas=True,
|
67 |
+
)
|
68 |
+
pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
|
69 |
+
model_id,
|
70 |
+
motion_adapter=motion_adapter,
|
71 |
+
controlnet=controlnet,
|
72 |
+
vae=vae,
|
73 |
+
scheduler=scheduler,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
).to(device)
|
76 |
+
pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
|
77 |
+
|
78 |
+
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-firework.png")
|
79 |
+
|
80 |
+
video = pipe(
|
81 |
+
prompt="closeup face photo of man in black clothes, night city street, bokeh, fireworks in background",
|
82 |
+
negative_prompt="low quality, worst quality",
|
83 |
+
num_inference_steps=25,
|
84 |
+
conditioning_frames=image,
|
85 |
+
controlnet_frame_indices=[0],
|
86 |
+
controlnet_conditioning_scale=1.0,
|
87 |
+
generator=torch.Generator().manual_seed(42),
|
88 |
+
).frames[0]
|
89 |
+
export_to_gif(video, "output.gif")
|
90 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|