File size: 4,419 Bytes
96e8020 61f2f82 96e8020 eac3a78 61f2f82 e01bb0e 96e8020 61f2f82 96e8020 61f2f82 96e8020 61f2f82 96e8020 61f2f82 96e8020 61f2f82 96e8020 61f2f82 96e8020 61f2f82 96e8020 e01bb0e 61f2f82 e01bb0e 96e8020 61f2f82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_15_0
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-br
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_15_0
type: common_voice_15_0
config: br
split: None
args: br
metrics:
- name: Wer
type: wer
value: 50.08524001794527
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m-br
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_15_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8404
- Wer: 50.0852
- Cer: 17.4519
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:-------:|:---------------:|:-------:|
| 6.6871 | 1.09 | 500 | 100.0 | 3.2774 | 100.0 |
| 3.0612 | 2.18 | 1000 | 99.9339 | 2.7879 | 99.9910 |
| 1.7934 | 3.27 | 1500 | 29.4362 | 1.1762 | 80.5922 |
| 1.0914 | 4.36 | 2000 | 25.0591 | 0.9210 | 70.7941 |
| 0.8895 | 5.45 | 2500 | 23.6321 | 0.8364 | 67.1243 |
| 0.7831 | 6.54 | 3000 | 22.4169 | 0.7813 | 63.9480 |
| 0.697 | 7.63 | 3500 | 21.4625 | 0.7820 | 61.8214 |
| 0.6474 | 8.71 | 4000 | 20.7367 | 0.7471 | 59.4437 |
| 0.5969 | 9.8 | 4500 | 20.0072 | 0.7255 | 57.8914 |
| 0.5677 | 10.89 | 5000 | 20.0563 | 0.7440 | 57.5774 |
| 0.5286 | 11.98 | 5500 | 19.7483 | 0.7622 | 56.2494 |
| 0.5054 | 13.07 | 6000 | 19.1510 | 0.7318 | 55.1548 |
| 0.4831 | 14.16 | 6500 | 19.2096 | 0.7731 | 54.6882 |
| 0.4606 | 15.25 | 7000 | 19.0282 | 0.7457 | 54.4459 |
| 0.4432 | 16.34 | 7500 | 18.9923 | 0.7638 | 54.1319 |
| 0.4116 | 17.43 | 8000 | 18.6880 | 0.7576 | 53.3692 |
| 0.4099 | 18.52 | 8500 | 18.6653 | 0.7944 | 53.1359 |
| 0.3991 | 19.61 | 9000 | 18.7258 | 0.8229 | 52.9296 |
| 0.3796 | 20.7 | 9500 | 18.4555 | 0.8106 | 52.3194 |
| 0.3715 | 21.79 | 10000 | 18.1078 | 0.7611 | 51.8798 |
| 0.359 | 22.88 | 10500 | 18.4139 | 0.7921 | 52.2207 |
| 0.3384 | 23.97 | 11000 | 18.0624 | 0.8022 | 51.4850 |
| 0.3367 | 25.05 | 11500 | 0.7921 | 51.5209 | 18.0322 |
| 0.3295 | 26.14 | 12000 | 0.8354 | 51.4491 | 17.9811 |
| 0.3183 | 27.23 | 12500 | 0.8171 | 51.0991 | 17.8488 |
| 0.3135 | 28.32 | 13000 | 0.8094 | 50.9915 | 17.7354 |
| 0.309 | 29.41 | 13500 | 0.8632 | 50.8659 | 17.7978 |
| 0.2922 | 30.5 | 14000 | 0.8268 | 50.7672 | 17.6636 |
| 0.2987 | 31.59 | 14500 | 0.8108 | 50.2557 | 17.5918 |
| 0.2914 | 32.68 | 15000 | 0.8237 | 50.0224 | 17.4708 |
| 0.2893 | 33.77 | 15500 | 0.8450 | 50.1211 | 17.3877 |
| 0.2853 | 34.86 | 16000 | 0.8354 | 50.4800 | 17.5464 |
| 0.2791 | 35.95 | 16500 | 0.8424 | 50.1929 | 17.5257 |
| 0.2732 | 37.04 | 17000 | 0.8390 | 50.2826 | 17.5653 |
| 0.2691 | 38.13 | 17500 | 0.8420 | 50.1122 | 17.4671 |
| 0.2702 | 39.22 | 18000 | 0.8404 | 50.0852 | 17.4519 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2
|