--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_15_0 metrics: - wer model-index: - name: wav2vec2-xls-r-300m-br results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_15_0 type: common_voice_15_0 config: br split: None args: br metrics: - name: Wer type: wer value: 49.79811574697174 --- # wav2vec2-xls-r-300m-br This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_15_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8887 - Wer: 49.7981 - Cer: 17.3877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 5.1153 | 2.18 | 1000 | 2.8854 | 100.0 | 100.0 | | 1.4117 | 4.36 | 2000 | 0.9161 | 71.2786 | 25.3180 | | 0.7888 | 6.54 | 3000 | 0.7753 | 62.7456 | 22.0767 | | 0.6316 | 8.71 | 4000 | 0.7550 | 58.1786 | 20.5383 | | 0.5434 | 10.89 | 5000 | 0.7508 | 56.5096 | 20.1168 | | 0.4672 | 13.07 | 6000 | 0.7844 | 54.9125 | 19.3835 | | 0.4237 | 15.25 | 7000 | 0.7786 | 53.2705 | 18.5765 | | 0.3899 | 17.43 | 8000 | 0.8050 | 53.0552 | 18.6105 | | 0.3607 | 19.61 | 9000 | 0.8280 | 51.9874 | 18.3024 | | 0.3355 | 21.79 | 10000 | 0.7967 | 51.5388 | 17.9811 | | 0.3098 | 23.97 | 11000 | 0.8296 | 51.2876 | 17.9547 | | 0.2937 | 26.14 | 12000 | 0.8544 | 50.9915 | 17.7827 | | 0.2793 | 28.32 | 13000 | 0.8909 | 51.5478 | 18.1286 | | 0.2641 | 30.5 | 14000 | 0.8740 | 50.4800 | 17.6561 | | 0.2552 | 32.68 | 15000 | 0.8832 | 49.9776 | 17.4463 | | 0.2467 | 34.86 | 16000 | 0.8753 | 50.3096 | 17.4765 | | 0.2378 | 37.04 | 17000 | 0.8895 | 49.8789 | 17.3952 | | 0.2337 | 39.22 | 18000 | 0.8887 | 49.7981 | 17.3877 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2