--- language: - br license: apache-2.0 tags: - generated_from_trainer base_model: facebook/wav2vec2-xls-r-300m datasets: - mozilla-foundation/common_voice_15_0 metrics: - wer model-index: - name: wav2vec2-xls-r-300m-breton results: [] --- # wav2vec2-xls-r-300m-breton This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [mozilla-foundation/common_voice_15_0]() dataset. It achieves the following results on the evaluation set: - Loss: 0.9939 - Wer: 0.4680 - Cer: 0.1711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.08 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 10.4347 | 2.56 | 250 | 3.7906 | 1.0 | 1.0 | | 3.2144 | 5.13 | 500 | 3.0622 | 1.0 | 1.0 | | 2.6193 | 7.69 | 750 | 1.6063 | 0.9122 | 0.4042 | | 1.3658 | 10.26 | 1000 | 1.0917 | 0.7061 | 0.2474 | | 0.9614 | 12.82 | 1250 | 0.9805 | 0.6384 | 0.2245 | | 0.7915 | 15.38 | 1500 | 0.9340 | 0.5989 | 0.2124 | | 0.6728 | 17.95 | 1750 | 0.9135 | 0.5735 | 0.2016 | | 0.5889 | 20.51 | 2000 | 0.9381 | 0.5443 | 0.1944 | | 0.5374 | 23.08 | 2250 | 0.9517 | 0.5372 | 0.1918 | | 0.4972 | 25.64 | 2500 | 0.9171 | 0.5134 | 0.1828 | | 0.4537 | 28.21 | 2750 | 0.9457 | 0.5043 | 0.1804 | | 0.4217 | 30.77 | 3000 | 0.9479 | 0.4957 | 0.1789 | | 0.4082 | 33.33 | 3250 | 0.9400 | 0.4906 | 0.1762 | | 0.4005 | 35.9 | 3500 | 0.9710 | 0.4881 | 0.1770 | | 0.3702 | 38.46 | 3750 | 0.9922 | 0.4792 | 0.1757 | | 0.3473 | 41.03 | 4000 | 0.9724 | 0.4760 | 0.1734 | | 0.3405 | 43.59 | 4250 | 0.9860 | 0.4726 | 0.1722 | | 0.325 | 46.15 | 4500 | 0.9888 | 0.4679 | 0.1705 | | 0.3193 | 48.72 | 4750 | 0.9939 | 0.4680 | 0.1711 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0