Upload unet_2d_condition_woct.py
Browse files
oms_module/unet_2d_condition_woct.py
ADDED
@@ -0,0 +1,756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
26 |
+
from diffusers.models.embeddings import (
|
27 |
+
GaussianFourierProjection,
|
28 |
+
ImageHintTimeEmbedding,
|
29 |
+
ImageProjection,
|
30 |
+
ImageTimeEmbedding,
|
31 |
+
TextImageProjection,
|
32 |
+
TextImageTimeEmbedding,
|
33 |
+
TextTimeEmbedding,
|
34 |
+
TimestepEmbedding,
|
35 |
+
Timesteps,
|
36 |
+
)
|
37 |
+
from diffusers.models.modeling_utils import ModelMixin
|
38 |
+
from diffusers.models.unet_2d_blocks import (
|
39 |
+
CrossAttnDownBlock2D,
|
40 |
+
CrossAttnUpBlock2D,
|
41 |
+
DownBlock2D,
|
42 |
+
UNetMidBlock2DCrossAttn,
|
43 |
+
UNetMidBlock2DSimpleCrossAttn,
|
44 |
+
UpBlock2D,
|
45 |
+
get_down_block,
|
46 |
+
get_up_block,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
51 |
+
|
52 |
+
|
53 |
+
@dataclass
|
54 |
+
class UNet2DConditionOutput(BaseOutput):
|
55 |
+
"""
|
56 |
+
The output of [`UNet2DConditionModel`].
|
57 |
+
|
58 |
+
Args:
|
59 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
60 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
61 |
+
"""
|
62 |
+
|
63 |
+
sample: torch.FloatTensor = None
|
64 |
+
|
65 |
+
|
66 |
+
class UNet2DConditionWoCTModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
67 |
+
r"""
|
68 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, but w/o a timestep and returns a sample
|
69 |
+
shaped output.
|
70 |
+
|
71 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
72 |
+
for all models (such as downloading or saving).
|
73 |
+
|
74 |
+
Parameters:
|
75 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
76 |
+
Height and width of input/output sample.
|
77 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
78 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
79 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
80 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
81 |
+
The tuple of downsample blocks to use.
|
82 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
83 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
84 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
85 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
86 |
+
The tuple of upsample blocks to use.
|
87 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
88 |
+
Whether to include self-attention in the basic transformer blocks, see
|
89 |
+
[`~models.attention.BasicTransformerBlock`].
|
90 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
91 |
+
The tuple of output channels for each block.
|
92 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
93 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
94 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
95 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
96 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
97 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
98 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
99 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
100 |
+
The dimension of the cross attention features.
|
101 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
102 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
103 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
104 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
105 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
106 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
107 |
+
dimension to `cross_attention_dim`.
|
108 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
109 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
110 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
111 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
112 |
+
num_attention_heads (`int`, *optional*):
|
113 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
114 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
115 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
116 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
117 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
118 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
119 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
120 |
+
otherwise.
|
121 |
+
"""
|
122 |
+
|
123 |
+
_supports_gradient_checkpointing = True
|
124 |
+
|
125 |
+
@register_to_config
|
126 |
+
def __init__(
|
127 |
+
self,
|
128 |
+
sample_size: Optional[int] = None,
|
129 |
+
in_channels: int = 4,
|
130 |
+
out_channels: int = 4,
|
131 |
+
center_input_sample: bool = False,
|
132 |
+
down_block_types: Tuple[str] = (
|
133 |
+
"CrossAttnDownBlock2D",
|
134 |
+
"CrossAttnDownBlock2D",
|
135 |
+
"CrossAttnDownBlock2D",
|
136 |
+
"DownBlock2D",
|
137 |
+
),
|
138 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
139 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
140 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
141 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
142 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
143 |
+
downsample_padding: int = 1,
|
144 |
+
mid_block_scale_factor: float = 1,
|
145 |
+
act_fn: str = "silu",
|
146 |
+
norm_num_groups: Optional[int] = 32,
|
147 |
+
norm_eps: float = 1e-5,
|
148 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
149 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
150 |
+
encoder_hid_dim: Optional[int] = None,
|
151 |
+
encoder_hid_dim_type: Optional[str] = None,
|
152 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
153 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
154 |
+
dual_cross_attention: bool = False,
|
155 |
+
use_linear_projection: bool = False,
|
156 |
+
upcast_attention: bool = False,
|
157 |
+
resnet_out_scale_factor: int = 1.0,
|
158 |
+
conv_in_kernel: int = 3,
|
159 |
+
conv_out_kernel: int = 3,
|
160 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
161 |
+
cross_attention_norm: Optional[str] = None,
|
162 |
+
):
|
163 |
+
super().__init__()
|
164 |
+
|
165 |
+
self.sample_size = sample_size
|
166 |
+
|
167 |
+
if num_attention_heads is not None:
|
168 |
+
raise ValueError(
|
169 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
170 |
+
)
|
171 |
+
|
172 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
173 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
174 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
175 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
176 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
177 |
+
# which is why we correct for the naming here.
|
178 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
179 |
+
|
180 |
+
# Check inputs
|
181 |
+
if len(down_block_types) != len(up_block_types):
|
182 |
+
raise ValueError(
|
183 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
184 |
+
)
|
185 |
+
|
186 |
+
if len(block_out_channels) != len(down_block_types):
|
187 |
+
raise ValueError(
|
188 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
189 |
+
)
|
190 |
+
|
191 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
192 |
+
raise ValueError(
|
193 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
194 |
+
)
|
195 |
+
|
196 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
197 |
+
raise ValueError(
|
198 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
199 |
+
)
|
200 |
+
|
201 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
202 |
+
raise ValueError(
|
203 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
204 |
+
)
|
205 |
+
|
206 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
207 |
+
raise ValueError(
|
208 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
209 |
+
)
|
210 |
+
|
211 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
212 |
+
raise ValueError(
|
213 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
214 |
+
)
|
215 |
+
|
216 |
+
# input
|
217 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
218 |
+
self.conv_in = nn.Conv2d(
|
219 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
220 |
+
)
|
221 |
+
|
222 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
223 |
+
encoder_hid_dim_type = "text_proj"
|
224 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
225 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
226 |
+
|
227 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
228 |
+
raise ValueError(
|
229 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
230 |
+
)
|
231 |
+
|
232 |
+
if encoder_hid_dim_type == "text_proj":
|
233 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
234 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
235 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
236 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
237 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
238 |
+
self.encoder_hid_proj = TextImageProjection(
|
239 |
+
text_embed_dim=encoder_hid_dim,
|
240 |
+
image_embed_dim=cross_attention_dim,
|
241 |
+
cross_attention_dim=cross_attention_dim,
|
242 |
+
)
|
243 |
+
elif encoder_hid_dim_type == "image_proj":
|
244 |
+
# Kandinsky 2.2
|
245 |
+
self.encoder_hid_proj = ImageProjection(
|
246 |
+
image_embed_dim=encoder_hid_dim,
|
247 |
+
cross_attention_dim=cross_attention_dim,
|
248 |
+
)
|
249 |
+
elif encoder_hid_dim_type is not None:
|
250 |
+
raise ValueError(
|
251 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
252 |
+
)
|
253 |
+
else:
|
254 |
+
self.encoder_hid_proj = None
|
255 |
+
|
256 |
+
self.down_blocks = nn.ModuleList([])
|
257 |
+
self.up_blocks = nn.ModuleList([])
|
258 |
+
|
259 |
+
if isinstance(only_cross_attention, bool):
|
260 |
+
if mid_block_only_cross_attention is None:
|
261 |
+
mid_block_only_cross_attention = only_cross_attention
|
262 |
+
|
263 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
264 |
+
|
265 |
+
if mid_block_only_cross_attention is None:
|
266 |
+
mid_block_only_cross_attention = False
|
267 |
+
|
268 |
+
if isinstance(num_attention_heads, int):
|
269 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
270 |
+
|
271 |
+
if isinstance(attention_head_dim, int):
|
272 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
273 |
+
|
274 |
+
if isinstance(cross_attention_dim, int):
|
275 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
276 |
+
|
277 |
+
if isinstance(layers_per_block, int):
|
278 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
279 |
+
|
280 |
+
if isinstance(transformer_layers_per_block, int):
|
281 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
282 |
+
|
283 |
+
# disable time cond
|
284 |
+
time_embed_dim = None
|
285 |
+
blocks_time_embed_dim = time_embed_dim
|
286 |
+
resnet_time_scale_shift = None
|
287 |
+
resnet_skip_time_act = False
|
288 |
+
|
289 |
+
# down
|
290 |
+
output_channel = block_out_channels[0]
|
291 |
+
for i, down_block_type in enumerate(down_block_types):
|
292 |
+
input_channel = output_channel
|
293 |
+
output_channel = block_out_channels[i]
|
294 |
+
is_final_block = i == len(block_out_channels) - 1
|
295 |
+
|
296 |
+
down_block = get_down_block(
|
297 |
+
down_block_type,
|
298 |
+
num_layers=layers_per_block[i],
|
299 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
300 |
+
in_channels=input_channel,
|
301 |
+
out_channels=output_channel,
|
302 |
+
temb_channels=blocks_time_embed_dim,
|
303 |
+
add_downsample=not is_final_block,
|
304 |
+
resnet_eps=norm_eps,
|
305 |
+
resnet_act_fn=act_fn,
|
306 |
+
resnet_groups=norm_num_groups,
|
307 |
+
cross_attention_dim=cross_attention_dim[i],
|
308 |
+
num_attention_heads=num_attention_heads[i],
|
309 |
+
downsample_padding=downsample_padding,
|
310 |
+
dual_cross_attention=dual_cross_attention,
|
311 |
+
use_linear_projection=use_linear_projection,
|
312 |
+
only_cross_attention=only_cross_attention[i],
|
313 |
+
upcast_attention=upcast_attention,
|
314 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
315 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
316 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
317 |
+
cross_attention_norm=cross_attention_norm,
|
318 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
319 |
+
)
|
320 |
+
self.down_blocks.append(down_block)
|
321 |
+
|
322 |
+
# mid
|
323 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
324 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
325 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
326 |
+
in_channels=block_out_channels[-1],
|
327 |
+
temb_channels=blocks_time_embed_dim,
|
328 |
+
resnet_eps=norm_eps,
|
329 |
+
resnet_act_fn=act_fn,
|
330 |
+
output_scale_factor=mid_block_scale_factor,
|
331 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
332 |
+
cross_attention_dim=cross_attention_dim[-1],
|
333 |
+
num_attention_heads=num_attention_heads[-1],
|
334 |
+
resnet_groups=norm_num_groups,
|
335 |
+
dual_cross_attention=dual_cross_attention,
|
336 |
+
use_linear_projection=use_linear_projection,
|
337 |
+
upcast_attention=upcast_attention,
|
338 |
+
)
|
339 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
340 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
341 |
+
in_channels=block_out_channels[-1],
|
342 |
+
temb_channels=blocks_time_embed_dim,
|
343 |
+
resnet_eps=norm_eps,
|
344 |
+
resnet_act_fn=act_fn,
|
345 |
+
output_scale_factor=mid_block_scale_factor,
|
346 |
+
cross_attention_dim=cross_attention_dim[-1],
|
347 |
+
attention_head_dim=attention_head_dim[-1],
|
348 |
+
resnet_groups=norm_num_groups,
|
349 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
350 |
+
skip_time_act=resnet_skip_time_act,
|
351 |
+
only_cross_attention=mid_block_only_cross_attention,
|
352 |
+
cross_attention_norm=cross_attention_norm,
|
353 |
+
)
|
354 |
+
elif mid_block_type is None:
|
355 |
+
self.mid_block = None
|
356 |
+
else:
|
357 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
358 |
+
|
359 |
+
# count how many layers upsample the images
|
360 |
+
self.num_upsamplers = 0
|
361 |
+
|
362 |
+
# up
|
363 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
364 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
365 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
366 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
367 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
368 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
369 |
+
|
370 |
+
output_channel = reversed_block_out_channels[0]
|
371 |
+
for i, up_block_type in enumerate(up_block_types):
|
372 |
+
is_final_block = i == len(block_out_channels) - 1
|
373 |
+
|
374 |
+
prev_output_channel = output_channel
|
375 |
+
output_channel = reversed_block_out_channels[i]
|
376 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
377 |
+
|
378 |
+
# add upsample block for all BUT final layer
|
379 |
+
if not is_final_block:
|
380 |
+
add_upsample = True
|
381 |
+
self.num_upsamplers += 1
|
382 |
+
else:
|
383 |
+
add_upsample = False
|
384 |
+
|
385 |
+
up_block = get_up_block(
|
386 |
+
up_block_type,
|
387 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
388 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
389 |
+
in_channels=input_channel,
|
390 |
+
out_channels=output_channel,
|
391 |
+
prev_output_channel=prev_output_channel,
|
392 |
+
temb_channels=blocks_time_embed_dim,
|
393 |
+
add_upsample=add_upsample,
|
394 |
+
resnet_eps=norm_eps,
|
395 |
+
resnet_act_fn=act_fn,
|
396 |
+
resnet_groups=norm_num_groups,
|
397 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
398 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
399 |
+
dual_cross_attention=dual_cross_attention,
|
400 |
+
use_linear_projection=use_linear_projection,
|
401 |
+
only_cross_attention=only_cross_attention[i],
|
402 |
+
upcast_attention=upcast_attention,
|
403 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
404 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
405 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
406 |
+
cross_attention_norm=cross_attention_norm,
|
407 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
408 |
+
)
|
409 |
+
self.up_blocks.append(up_block)
|
410 |
+
prev_output_channel = output_channel
|
411 |
+
|
412 |
+
# out
|
413 |
+
if norm_num_groups is not None:
|
414 |
+
self.conv_norm_out = nn.GroupNorm(
|
415 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
416 |
+
)
|
417 |
+
|
418 |
+
self.conv_act = get_activation(act_fn)
|
419 |
+
|
420 |
+
else:
|
421 |
+
self.conv_norm_out = None
|
422 |
+
self.conv_act = None
|
423 |
+
|
424 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
425 |
+
self.conv_out = nn.Conv2d(
|
426 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
427 |
+
)
|
428 |
+
|
429 |
+
@property
|
430 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
431 |
+
r"""
|
432 |
+
Returns:
|
433 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
434 |
+
indexed by its weight name.
|
435 |
+
"""
|
436 |
+
# set recursively
|
437 |
+
processors = {}
|
438 |
+
|
439 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
440 |
+
if hasattr(module, "set_processor"):
|
441 |
+
processors[f"{name}.processor"] = module.processor
|
442 |
+
|
443 |
+
for sub_name, child in module.named_children():
|
444 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
445 |
+
|
446 |
+
return processors
|
447 |
+
|
448 |
+
for name, module in self.named_children():
|
449 |
+
fn_recursive_add_processors(name, module, processors)
|
450 |
+
|
451 |
+
return processors
|
452 |
+
|
453 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
454 |
+
r"""
|
455 |
+
Sets the attention processor to use to compute attention.
|
456 |
+
|
457 |
+
Parameters:
|
458 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
459 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
460 |
+
for **all** `Attention` layers.
|
461 |
+
|
462 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
463 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
464 |
+
|
465 |
+
"""
|
466 |
+
count = len(self.attn_processors.keys())
|
467 |
+
|
468 |
+
if isinstance(processor, dict) and len(processor) != count:
|
469 |
+
raise ValueError(
|
470 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
471 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
472 |
+
)
|
473 |
+
|
474 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
475 |
+
if hasattr(module, "set_processor"):
|
476 |
+
if not isinstance(processor, dict):
|
477 |
+
module.set_processor(processor)
|
478 |
+
else:
|
479 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
480 |
+
|
481 |
+
for sub_name, child in module.named_children():
|
482 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
483 |
+
|
484 |
+
for name, module in self.named_children():
|
485 |
+
fn_recursive_attn_processor(name, module, processor)
|
486 |
+
|
487 |
+
def set_default_attn_processor(self):
|
488 |
+
"""
|
489 |
+
Disables custom attention processors and sets the default attention implementation.
|
490 |
+
"""
|
491 |
+
self.set_attn_processor(AttnProcessor())
|
492 |
+
|
493 |
+
def set_attention_slice(self, slice_size):
|
494 |
+
r"""
|
495 |
+
Enable sliced attention computation.
|
496 |
+
|
497 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
498 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
499 |
+
|
500 |
+
Args:
|
501 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
502 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
503 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
504 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
505 |
+
must be a multiple of `slice_size`.
|
506 |
+
"""
|
507 |
+
sliceable_head_dims = []
|
508 |
+
|
509 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
510 |
+
if hasattr(module, "set_attention_slice"):
|
511 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
512 |
+
|
513 |
+
for child in module.children():
|
514 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
515 |
+
|
516 |
+
# retrieve number of attention layers
|
517 |
+
for module in self.children():
|
518 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
519 |
+
|
520 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
521 |
+
|
522 |
+
if slice_size == "auto":
|
523 |
+
# half the attention head size is usually a good trade-off between
|
524 |
+
# speed and memory
|
525 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
526 |
+
elif slice_size == "max":
|
527 |
+
# make smallest slice possible
|
528 |
+
slice_size = num_sliceable_layers * [1]
|
529 |
+
|
530 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
531 |
+
|
532 |
+
if len(slice_size) != len(sliceable_head_dims):
|
533 |
+
raise ValueError(
|
534 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
535 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
536 |
+
)
|
537 |
+
|
538 |
+
for i in range(len(slice_size)):
|
539 |
+
size = slice_size[i]
|
540 |
+
dim = sliceable_head_dims[i]
|
541 |
+
if size is not None and size > dim:
|
542 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
543 |
+
|
544 |
+
# Recursively walk through all the children.
|
545 |
+
# Any children which exposes the set_attention_slice method
|
546 |
+
# gets the message
|
547 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
548 |
+
if hasattr(module, "set_attention_slice"):
|
549 |
+
module.set_attention_slice(slice_size.pop())
|
550 |
+
|
551 |
+
for child in module.children():
|
552 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
553 |
+
|
554 |
+
reversed_slice_size = list(reversed(slice_size))
|
555 |
+
for module in self.children():
|
556 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
557 |
+
|
558 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
559 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
|
560 |
+
module.gradient_checkpointing = value
|
561 |
+
|
562 |
+
def forward(
|
563 |
+
self,
|
564 |
+
sample: torch.FloatTensor,
|
565 |
+
encoder_hidden_states: torch.Tensor,
|
566 |
+
attention_mask: Optional[torch.Tensor] = None,
|
567 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
568 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
569 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
570 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
571 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
572 |
+
return_dict: bool = True,
|
573 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
574 |
+
r"""
|
575 |
+
The [`UNet2DConditionModel`] forward method.
|
576 |
+
|
577 |
+
Args:
|
578 |
+
sample (`torch.FloatTensor`):
|
579 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
580 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
581 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
582 |
+
encoder_attention_mask (`torch.Tensor`):
|
583 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
584 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
585 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
586 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
587 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
588 |
+
tuple.
|
589 |
+
cross_attention_kwargs (`dict`, *optional*):
|
590 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
591 |
+
added_cond_kwargs: (`dict`, *optional*):
|
592 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
593 |
+
are passed along to the UNet blocks.
|
594 |
+
|
595 |
+
Returns:
|
596 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
597 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
598 |
+
a `tuple` is returned where the first element is the sample tensor.
|
599 |
+
"""
|
600 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
601 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
602 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
603 |
+
# on the fly if necessary.
|
604 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
605 |
+
|
606 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
607 |
+
forward_upsample_size = False
|
608 |
+
upsample_size = None
|
609 |
+
|
610 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
611 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
612 |
+
forward_upsample_size = True
|
613 |
+
|
614 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
615 |
+
# expects mask of shape:
|
616 |
+
# [batch, key_tokens]
|
617 |
+
# adds singleton query_tokens dimension:
|
618 |
+
# [batch, 1, key_tokens]
|
619 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
620 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
621 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
622 |
+
if attention_mask is not None:
|
623 |
+
# assume that mask is expressed as:
|
624 |
+
# (1 = keep, 0 = discard)
|
625 |
+
# convert mask into a bias that can be added to attention scores:
|
626 |
+
# (keep = +0, discard = -10000.0)
|
627 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
628 |
+
attention_mask = attention_mask.unsqueeze(1)
|
629 |
+
|
630 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
631 |
+
if encoder_attention_mask is not None:
|
632 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
633 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
634 |
+
|
635 |
+
# 0. center input if necessary
|
636 |
+
if self.config.center_input_sample:
|
637 |
+
sample = 2 * sample - 1.0
|
638 |
+
|
639 |
+
# 1. time (skip)
|
640 |
+
emb = None
|
641 |
+
|
642 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
643 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
644 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
645 |
+
# Kadinsky 2.1 - style
|
646 |
+
if "image_embeds" not in added_cond_kwargs:
|
647 |
+
raise ValueError(
|
648 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
649 |
+
)
|
650 |
+
|
651 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
652 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
653 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
654 |
+
# Kandinsky 2.2 - style
|
655 |
+
if "image_embeds" not in added_cond_kwargs:
|
656 |
+
raise ValueError(
|
657 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
658 |
+
)
|
659 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
660 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
661 |
+
# 2. pre-process
|
662 |
+
sample = self.conv_in(sample)
|
663 |
+
|
664 |
+
# 3. down
|
665 |
+
|
666 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
667 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
668 |
+
|
669 |
+
down_block_res_samples = (sample,)
|
670 |
+
for downsample_block in self.down_blocks:
|
671 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
672 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
673 |
+
additional_residuals = {}
|
674 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
675 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
676 |
+
|
677 |
+
sample, res_samples = downsample_block(
|
678 |
+
hidden_states=sample,
|
679 |
+
temb=emb,
|
680 |
+
encoder_hidden_states=encoder_hidden_states,
|
681 |
+
attention_mask=attention_mask,
|
682 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
683 |
+
encoder_attention_mask=encoder_attention_mask,
|
684 |
+
**additional_residuals,
|
685 |
+
)
|
686 |
+
else:
|
687 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
688 |
+
|
689 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
690 |
+
sample += down_block_additional_residuals.pop(0)
|
691 |
+
|
692 |
+
down_block_res_samples += res_samples
|
693 |
+
|
694 |
+
if is_controlnet:
|
695 |
+
new_down_block_res_samples = ()
|
696 |
+
|
697 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
698 |
+
down_block_res_samples, down_block_additional_residuals
|
699 |
+
):
|
700 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
701 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
702 |
+
|
703 |
+
down_block_res_samples = new_down_block_res_samples
|
704 |
+
|
705 |
+
# 4. mid
|
706 |
+
if self.mid_block is not None:
|
707 |
+
sample = self.mid_block(
|
708 |
+
sample,
|
709 |
+
emb,
|
710 |
+
encoder_hidden_states=encoder_hidden_states,
|
711 |
+
attention_mask=attention_mask,
|
712 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
713 |
+
encoder_attention_mask=encoder_attention_mask,
|
714 |
+
)
|
715 |
+
|
716 |
+
if is_controlnet:
|
717 |
+
sample = sample + mid_block_additional_residual
|
718 |
+
|
719 |
+
# 5. up
|
720 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
721 |
+
is_final_block = i == len(self.up_blocks) - 1
|
722 |
+
|
723 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
724 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
725 |
+
|
726 |
+
# if we have not reached the final block and need to forward the
|
727 |
+
# upsample size, we do it here
|
728 |
+
if not is_final_block and forward_upsample_size:
|
729 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
730 |
+
|
731 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
732 |
+
sample = upsample_block(
|
733 |
+
hidden_states=sample,
|
734 |
+
temb=emb,
|
735 |
+
res_hidden_states_tuple=res_samples,
|
736 |
+
encoder_hidden_states=encoder_hidden_states,
|
737 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
738 |
+
upsample_size=upsample_size,
|
739 |
+
attention_mask=attention_mask,
|
740 |
+
encoder_attention_mask=encoder_attention_mask,
|
741 |
+
)
|
742 |
+
else:
|
743 |
+
sample = upsample_block(
|
744 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
745 |
+
)
|
746 |
+
|
747 |
+
# 6. post-process
|
748 |
+
if self.conv_norm_out:
|
749 |
+
sample = self.conv_norm_out(sample)
|
750 |
+
sample = self.conv_act(sample)
|
751 |
+
sample = self.conv_out(sample)
|
752 |
+
|
753 |
+
if not return_dict:
|
754 |
+
return (sample,)
|
755 |
+
|
756 |
+
return UNet2DConditionOutput(sample=sample)
|