Prot2Text-Large-v1-1 / modeling_prot2text.py
habdine's picture
Upload 8 files
b8be111 verified
from transformers import GPT2Config, AutoTokenizer, GPT2Config
from transformers import PretrainedConfig, PreTrainedModel
import transformers
from typing import Optional, Tuple, Callable
import torch
import torch.nn as nn
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
from .utils import CABlock, _GPT2LMHeadModel
from .configuration_prot2text import Prot2TextConfig
import os
import numpy as np
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.logits_process import LogitsProcessorList
from transformers.generation.stopping_criteria import StoppingCriteriaList
from .pdb2graph import PDB2Graph, download_alphafold_structure
from .graphs import *
from .utils_dataset import *
try:
from graphein.protein.config import ProteinGraphConfig, DSSPConfig
from graphein.protein.features.nodes.amino_acid import amino_acid_one_hot, meiler_embedding, expasy_protein_scale, hydrogen_bond_acceptor, hydrogen_bond_donor
from graphein.protein.features.nodes.dssp import phi, psi, asa, rsa, secondary_structure
from graphein.protein.edges.distance import (add_peptide_bonds,
add_hydrogen_bond_interactions,
add_distance_threshold,
)
except ImportError:
raise Exception('You need to install graphein from source in addition to DSSP to use this model please refer to https://github.com/a-r-j/graphein and https://ssbio.readthedocs.io/en/latest/instructions/dssp.html')
try:
from torch_geometric.nn import RGCNConv, global_mean_pool
except ImportError:
raise Exception('You need to install torch geometric and its dependecies to use this model please refer to https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html')
class EncoderRGCN(PreTrainedModel):
'''
This class implement the RGCN encoder to encode the protein structure
'''
def __init__(self, input_dim, hidden_dim=512, n_layers=6, emb_dim=512, dropout=0.2, num_relation=7, prot2text_version='1.0'):
super(EncoderRGCN, self).__init__(PretrainedConfig(name='RGCN'))
self.n_layers = n_layers
self.output_dim = emb_dim
self.prot2text_version = prot2text_version
self.fc0 = nn.Linear(input_dim, hidden_dim)
self.batchnorm_final = nn.BatchNorm1d(hidden_dim)
self.batch_norms = nn.ModuleList()
self.batch_norms.append(nn.BatchNorm1d(hidden_dim))
lst = list()
lst.append(RGCNConv(hidden_dim, hidden_dim, num_relations=num_relation))
for i in range(n_layers-1):
lst.append(RGCNConv(hidden_dim,hidden_dim, num_relations=num_relation))
self.conv = nn.ModuleList(lst)
self.fc1 = nn.Linear(hidden_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, self.output_dim)
self.dropout = nn.Dropout(p=dropout)
self.relu = nn.LeakyReLU()
self.batchnorm = nn.BatchNorm1d(hidden_dim)
self.main_input_name = 'nothing'
def forward(self, x:Optional[torch.FloatTensor] = None,
edge_index:Optional[torch.LongTensor] = None,
edge_type:Optional[torch.LongTensor] = None,
batch:Optional[torch.LongTensor] = None,
**kargs):
#construct pyg edge index shape (2, num_edges) from edge_list
x = self.relu(self.fc0(x))
for i in range(self.n_layers):
x = self.conv[i](x, edge_index, edge_type)
out = global_mean_pool(x, batch)
out = self.relu(self.fc1(out))
out = self.relu(self.fc2(out))
return out.unsqueeze(1)
class Prot2TextModel(PreTrainedModel):
config_class = Prot2TextConfig
_keys_to_ignore_on_load_missing = [r"transformer"]
base_model_prefix = "decoder"
def __init__(self, config):
super().__init__(config)
self.gpt_config = GPT2Config.from_dict(config.gpt_config)
# if we are using RGCN to encode the protein's structure, define the RGCN encoder
if config.rgcn:
self.encoder = EncoderRGCN(input_dim=config.rgcn_input_dim, hidden_dim=self.gpt_config.n_embd, n_layers=config.rgcn_n_layers, emb_dim=self.gpt_config.n_embd, prot2text_version=self.config.prot2text_version)
# define the GPT2 decoder
self.decoder = _GPT2LMHeadModel(self.gpt_config)
# if using ESM to encode protein's sequence, define the ESM layer, the Projection layer and the fusion layer
if config.esm:
self.esm_config = PretrainedConfig.from_dict(config.esm_config)
self.esm = transformers.EsmModel(self.esm_config)
self.to_embedding = nn.Linear(self.esm_config.hidden_size, self.gpt_config.n_embd)
if config.cross_esm_graph and config.rgcn:
self.h = nn.ModuleList([CABlock(self.gpt_config, layer_idx=i) for i in range(4)])
self.ln_f = nn.LayerNorm(self.gpt_config.n_embd, eps=self.gpt_config.layer_norm_epsilon)
self.config = config
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
if hasattr(self, "transformer"):
return self.transformer.wte
return self.decoder.transformer.wte
def warm_up(self, gpt_model=None, esm_model=None):
if esm_model is not None:
self.esm = transformers.EsmModel.from_pretrained(esm_model)
if gpt_model is not None:
self.decoder = _GPT2LMHeadModel.from_pretrained(gpt_model, add_cross_attention=True, use_cache=False)
self.decoder.resize_token_embeddings(self.gpt_config.vocab_size)
self.decoder.config = self.gpt_config
def forward(self,
encoder_input_ids: Optional[torch.LongTensor] = None,
edge_index: Optional[torch.LongTensor] = None,
batch: Optional[torch.LongTensor] = None,
x: Optional[torch.FloatTensor] = None,
edge_type: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values_graph_esm: Optional[Tuple[Tuple[torch.Tensor]]] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
get_graph_emb: Optional[bool] = False,
**delete_args,
):
use_cache = use_cache if use_cache is not None else self.gpt_config.use_cache
return_dict = return_dict if return_dict is not None else self.gpt_config.use_return_dict
if decoder_input_ids is not None and len(decoder_input_ids.size()) == 3:
decoder_input_ids = decoder_input_ids.squeeze(0)
if x is not None and self.config.rgcn:
graph_emb = self.encoder(x, edge_index, edge_type, batch)
graph_mask = None
if self.config.esm:
if self.config.prot2text_version=='1.0':
if encoder_input_ids.size()[1] != 1021:
raise ValueError("For this version of the model you need to PAD/Truncate the amino acid sequence for the ESM model to 1021")
esm_emb = self.esm(input_ids=encoder_input_ids, attention_mask=attention_mask, return_dict=return_dict).last_hidden_state
esm_emb = self.to_embedding(esm_emb)
if not self.config.cross_esm_graph and self.config.rgcn:
graph_emb = torch.cat((graph_emb, esm_emb), dim=1)
t_add = torch.ones((attention_mask.size(0), 1)).to(attention_mask.get_device())
attention_mask = torch.cat((t_add, attention_mask), dim=1)
elif self.config.cross_esm_graph and self.config.rgcn:
if past_key_values_graph_esm is None:
past_length = 0
past_key_values_graph_esm = tuple([None] * len(self.h))
else:
past_length = past_key_values_graph_esm[0][0].size(-2)
output_shape = esm_emb.size()
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.gpt_config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values_graph_esm)):
outputs = block(
esm_emb,
layer_past=layer_past,
attention_mask=attention_mask,
encoder_hidden_states=graph_emb,
encoder_attention_mask=graph_mask,
use_cache=use_cache,
output_attentions=False,
)
esm_emb = outputs[0]
esm_emb = self.ln_f(esm_emb)
esm_emb = esm_emb.view(output_shape)
graph_emb = esm_emb
else:
graph_emb = esm_emb
else:
attention_mask = None
if self.config.prot2text_version=='1.0':
attention_mask = None
if get_graph_emb:
return graph_emb
transformer_outputs = self.decoder(input_ids=decoder_input_ids,
past_key_values=past_key_values,
attention_mask=decoder_attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=graph_emb,
encoder_attention_mask=attention_mask,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return transformer_outputs
@torch.no_grad()
def generate_protein_description(self,
protein_pdbID=None,
protein_sequence=None,
edge_index: Optional[torch.LongTensor] = None,
x: Optional[torch.FloatTensor] = None,
edge_type: Optional[torch.LongTensor] = None,
tokenizer=None,
device='cpu'
):
if self.config.esm and not self.config.rgcn and protein_sequence==None:
raise ValueError(
"The model you are trying to use is based only on protein sequence, please provide an amino-acid protein_sequence"
)
if self.config.rgcn and protein_pdbID==None and (x==None or edge_index==None or edge_type==None):
raise ValueError(
"The model you are trying to use is based on protein structure, please provide a AlphaFold ID (you must have to have internet connection using protein_pdbID, or provide the triplet inputs: x (node features), edge_index and edge_type"
)
if self.config.esm:
esmtokenizer = AutoTokenizer.from_pretrained(self.config.esm_model_name)
if protein_pdbID==None and protein_sequence==None:
raise ValueError(
"you need to provide either a protein AlphaFold Id or an amino-acid sequence"
)
if protein_pdbID!=None:
config = {"node_metadata_functions": [amino_acid_one_hot,
expasy_protein_scale,
meiler_embedding,
hydrogen_bond_acceptor, hydrogen_bond_donor
],
"edge_construction_functions": [add_peptide_bonds,
add_hydrogen_bond_interactions,
partial(add_distance_threshold, long_interaction_threshold=3, threshold=10.),],
"graph_metadata_functions":[asa,phi, psi, secondary_structure, rsa],
"dssp_config": DSSPConfig()}
config = ProteinGraphConfig(**config)
PATH_TO_DATA = f"~/.tmp/pdb/pdb"
OUTPUT_FOLDER = f"~/.tmp/pdb/raw"
save_dir = f"~/.tmp/pdb/"
isExist = os.path.exists(PATH_TO_DATA)
if not isExist:
os.makedirs(PATH_TO_DATA)
isExist = os.path.exists(OUTPUT_FOLDER)
if not isExist:
os.makedirs(OUTPUT_FOLDER)
isExist = os.path.exists(save_dir+'processed')
if not isExist:
os.makedirs(save_dir+'processed')
structure_filename = download_alphafold_structure(uniprot_id=protein_pdbID, out_dir=PATH_TO_DATA)
if structure_filename is None:
raise ValueError("Error! the ID does not exist in AlphaFoldDB or you do not have internet connection")
graph_filename = structure_filename.split('/')
graph_filename[-2] = 'raw'
graph_filename[-1] = graph_filename[-1].replace('.pdb', '.pt')
graph_filename = '/'.join(graph_filename)
process_filename = structure_filename.split('/')
process_filename[-2] = 'processed'
process_filename[-1] = process_filename[-1].replace('.pdb', '.pt')
process_filename = '/'.join(process_filename)
try:
gpdb = PDB2Graph(root = PATH_TO_DATA, output_folder = OUTPUT_FOLDER, config=config, n_processors=1).create_pyg_graph(structure_filename)
seq = esmtokenizer(gpdb.sequence, add_special_tokens=True, truncation=True, max_length=1021, padding='max_length',return_tensors="pt") #
torch.save(gpdb, graph_filename)
gpdb.edge_type = [np.array(gpdb.edge_type.transpose(0,1))]
gpdb.encoder_input_ids = seq['input_ids']
gpdb.attention_mask = seq['attention_mask']
torch.save(gpdb, process_filename)
except:
os.remove(structure_filename)
raise ValueError('creating graphs did not work, probably the pdb file of alphaFold is damaged')
self.eval()
inputs = gpdb
inputs = inputs.to_dict()
inputs['edge_type'] = torch.cat([torch.tensor(inputs['edge_type'][i]) for i in range(len(inputs['edge_type']))], dim=0)
inputs['edge_type'] = torch.argmax(inputs['edge_type'], dim=1)
for key in ['num_nodes', 'node_id', 'name', 'sequence', 'distance_matrix', 'distance', 'coordinates']:
inputs.pop(key)
inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone()
inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id
inputs["decoder_attention_mask"] = torch.ones(inputs['decoder_input_ids'].shape[0], 1)
self.to(device)
inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
encoder_state = dict()
encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True)
encoder_state['attentions'] = inputs['attention_mask']
for key in ['edge_index', 'edge_type', 'x', 'encoder_input_ids']:
inputs.pop(key)
tok_ids = self.decoder.generate(input_ids=inputs['decoder_input_ids'],
encoder_outputs=encoder_state,
use_cache=True,
output_attentions=False,
output_scores=False,
return_dict_in_generate=True,
encoder_attention_mask=inputs['attention_mask'],
length_penalty=1.0,
no_repeat_ngram_size=None,
early_stopping=False,
num_beams=1)
generated = tokenizer.batch_decode(tok_ids.get('sequences'), skip_special_tokens=True)
os.remove(structure_filename)
os.remove(graph_filename)
os.remove(process_filename)
return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '')
else:
seq = esmtokenizer([protein_sequence], add_special_tokens=True, truncation=True, max_length=1021, padding='max_length', return_tensors="pt")
inputs={}
inputs['encoder_input_ids'] = seq['input_ids']
inputs['attention_mask'] = seq['attention_mask']
inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone()
inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id
self.to(device)
inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
encoder_state = dict()
encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True)
generated = tokenizer.batch_decode(self.decoder.generate(input_ids=inputs['decoder_input_ids'], encoder_outputs=encoder_state, use_cache=True), skip_special_tokens=True)
return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '')
@torch.no_grad()
def generate(self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
synced_gpus: Optional[bool] = None,
assistant_model: Optional["PreTrainedModel"] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
encoder_state = self(**kwargs, get_graph_emb=True)
input_ids = kwargs['decoder_input_ids']
attention_mask = kwargs['decoder_attention_mask']
kwargs['encoder_attention_mask'] = kwargs['attention_mask']
if not self.config.cross_esm_graph and self.config.rgcn and self.config.esm:
t_add = torch.ones((kwargs['encoder_attention_mask'].size(0), 1)).to(kwargs['encoder_attention_mask'].get_device())
kwargs['encoder_attention_mask'] = torch.cat((t_add, kwargs['encoder_attention_mask']), dim=1)
for key in ['edge_index', 'edge_type', 'x', 'encoder_input_ids', 'decoder_input_ids', 'decoder_attention_mask', 'batch', 'attention_mask', 'max_length',
'_num_nodes', 'node_id', 'name', 'sequence', 'distance_matrix', 'distance', 'coordinates', 'ptr', 'num_nodes',]:
if key in kwargs.keys():
kwargs.pop(key)
return self.decoder.generate(input_ids=input_ids,
generation_config=generation_config,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
synced_gpus=synced_gpus,
assistant_model=assistant_model,
streamer=streamer,
encoder_outputs={'hidden_states': encoder_state, 'attentions':0},
**kwargs
)