--- base_model: openai/clip-vit-base-patch32 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ktp-not-ktp-clip results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9900990099009901 --- # ktp-not-ktp-clip This model is a fine-tuned version of [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0368 - Accuracy: 0.9901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.9231 | 3 | 0.5958 | 0.5842 | | No log | 1.8462 | 6 | 0.3044 | 0.9208 | | No log | 2.7692 | 9 | 0.7273 | 0.7129 | | 0.5359 | 4.0 | 13 | 0.0641 | 0.9901 | | 0.5359 | 4.9231 | 16 | 0.0223 | 0.9901 | | 0.5359 | 5.8462 | 19 | 0.0094 | 1.0 | | 0.1299 | 6.7692 | 22 | 0.1034 | 0.9802 | | 0.1299 | 8.0 | 26 | 0.0095 | 0.9901 | | 0.1299 | 8.9231 | 29 | 0.0645 | 0.9901 | | 0.0218 | 9.8462 | 32 | 0.1035 | 0.9901 | | 0.0218 | 10.7692 | 35 | 0.0661 | 0.9901 | | 0.0218 | 12.0 | 39 | 0.0406 | 0.9901 | | 0.0419 | 12.9231 | 42 | 0.0367 | 0.9901 | | 0.0419 | 13.8462 | 45 | 0.0368 | 0.9901 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1