--- base_model: teknium/OpenHermes-2.5-Mistral-7B tags: - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation - dpo - rlhf license: apache-2.0 language: - en datasets: - mlabonne/chatml_dpo_pairs ---
# NeuralHermes 2.5 - Mistral 7B NeuralHermes is based on the [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on most benchmarks (see results). It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/1h4tAJStIef_BcO-OkY97X9_OFgKnFrLl). It required an A100 GPU for about an hour. ## Quantized models * **GGUF**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GGUF * **AWQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-AWQ * **GPTQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GPTQ * **EXL2**: * 3.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-3.0bpw-h6-exl2 * 4.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-4.0bpw-h6-exl2 * 5.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-5.0bpw-h6-exl2 * 6.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-6.0bpw-h6-exl2 * 8.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-8.0bpw-h8-exl2 ## Results **Update:** NeuralHermes-2.5 became the best Hermes-based model on the Open LLM leaderboard and one of the very best 7b models. 🎉 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/yWe6VBFxkHiuOlDVBXtGo.png) Teknium (author of OpenHermes-2.5-Mistral-7B) benchmarked the model ([see his tweet](https://twitter.com/Teknium1/status/1729955709377503660)). Results are improved on every benchmark: **AGIEval** (from 43.07% to 43.62%), **GPT4All** (from 73.12% to 73.25%), and **TruthfulQA**. ### AGIEval ![](https://i.imgur.com/7an3B1f.png) ### GPT4All ![](https://i.imgur.com/TLxZFi9.png) ### TruthfulQA ![](https://i.imgur.com/V380MqD.png) You can check the Weights & Biases project [here](https://wandb.ai/mlabonne/NeuralHermes-2-5-Mistral-7B/overview?workspace=user-mlabonne). ## Usage You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend. You can also run this model using the following code: ```python import transformers from transformers import AutoTokenizer model_id = "halbihn/NeuralHermes-2.5-Mistral-7B" # Format prompt message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=model_id, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) response = sequences[0]['generated_text'].split("<|im_start|>assistant")[-1].strip() print(response) # streaming example from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer import torch model_id = "halbihn/NeuralHermes-2.5-Mistral-7B" model = AutoModelForCausalLM.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) device = "cuda:0" if torch.cuda.is_available() else "cpu" model.to(device) def stream( user_prompt: str, max_tokens: int = 200, ) -> None: """Text streaming example """ system_prompt = 'Below is a conversation between Human and AI assistant named Mistral\n' message = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] prompt = tokenizer.apply_chat_template( message, add_generation_prompt=True, tokenize=False, ) inputs = tokenizer([prompt], return_tensors="pt").to(device) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) _ = model.generate(**inputs, streamer=streamer, max_new_tokens=max_tokens) stream("Tell me about the future") >>> The future is a vast and uncertain expanse, shaped by the collective actions and innovations of humanity. It is a blend of possibilities, technological advancements, and societal changes. Some potential aspects of the future include: >>> >>> 1. Technological advancements: Artificial intelligence, quantum computing, and biotechnology are expected to continue evolving, leading to breakthroughs in fields like medicine, energy, and communication. >>> >>> 2. Space exploration: As technology progresses, space travel may become more accessible, enabling humans to establish colonies on other planets and explore the cosmos further. >>> >>> 3. Climate change mitigation: The future will likely see increased efforts to combat climate change through renewable energy sources, carbon capture technologies, and sustainable practices. >>> >>> 4. Artificial intelligence integration: AI will likely become more integrated into daily life, assisting with tasks, automating jobs, and even influencing decision-making processes in various industries. ``` ## Training hyperparameters **LoRA**: * r=16 * lora_alpha=16 * lora_dropout=0.05 * bias="none" * task_type="CAUSAL_LM" * target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] **Training arguments**: * per_device_train_batch_size=4 * gradient_accumulation_steps=4 * gradient_checkpointing=True * learning_rate=5e-5 * lr_scheduler_type="cosine" * max_steps=200 * optim="paged_adamw_32bit" * warmup_steps=100 **DPOTrainer**: * beta=0.1 * max_prompt_length=1024 * max_length=1536