File size: 3,704 Bytes
d26ac45 cc2c4bc d26ac45 cc2c4bc d26ac45 cc2c4bc d26ac45 cc2c4bc d26ac45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Lesson1results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Lesson1results
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0149
- Accuracy: 0.9962
- F1-score: 0.9962
- Recall-score: 0.9962
- Precision-score: 0.9962
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Recall-score | Precision-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------------:|:---------------:|
| 1.1736 | 1.0 | 278 | 0.9850 | 0.7898 | 0.7552 | 0.7898 | 0.7813 |
| 0.4185 | 2.0 | 556 | 0.4326 | 0.9106 | 0.8991 | 0.9106 | 0.9062 |
| 0.3854 | 3.0 | 834 | 0.2507 | 0.9363 | 0.9335 | 0.9363 | 0.9409 |
| 0.2509 | 4.0 | 1112 | 0.1460 | 0.9666 | 0.9665 | 0.9666 | 0.9673 |
| 0.107 | 5.0 | 1390 | 0.1278 | 0.9641 | 0.9640 | 0.9641 | 0.9689 |
| 0.3585 | 6.0 | 1668 | 0.1188 | 0.9758 | 0.9758 | 0.9758 | 0.9764 |
| 0.2611 | 7.0 | 1946 | 0.1148 | 0.9704 | 0.9702 | 0.9704 | 0.9722 |
| 0.2493 | 8.0 | 2224 | 0.0638 | 0.9824 | 0.9824 | 0.9824 | 0.9828 |
| 0.0351 | 9.0 | 2502 | 0.0492 | 0.9887 | 0.9887 | 0.9887 | 0.9890 |
| 0.4708 | 10.0 | 2780 | 0.0479 | 0.9883 | 0.9883 | 0.9883 | 0.9885 |
| 0.2958 | 11.0 | 3058 | 0.0561 | 0.9865 | 0.9865 | 0.9865 | 0.9870 |
| 0.138 | 12.0 | 3336 | 0.0308 | 0.9916 | 0.9916 | 0.9916 | 0.9918 |
| 0.0525 | 13.0 | 3614 | 0.0226 | 0.9944 | 0.9944 | 0.9944 | 0.9944 |
| 0.0332 | 14.0 | 3892 | 0.0293 | 0.9916 | 0.9916 | 0.9916 | 0.9920 |
| 0.0332 | 15.0 | 4170 | 0.0202 | 0.9953 | 0.9953 | 0.9953 | 0.9953 |
| 0.339 | 16.0 | 4448 | 0.0210 | 0.9955 | 0.9955 | 0.9955 | 0.9955 |
| 0.211 | 17.0 | 4726 | 0.0218 | 0.9959 | 0.9959 | 0.9959 | 0.9960 |
| 0.0017 | 18.0 | 5004 | 0.0181 | 0.9964 | 0.9964 | 0.9964 | 0.9964 |
| 0.1646 | 19.0 | 5282 | 0.0166 | 0.9959 | 0.9959 | 0.9959 | 0.9960 |
| 0.0014 | 20.0 | 5560 | 0.0149 | 0.9962 | 0.9962 | 0.9962 | 0.9962 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|