File size: 5,344 Bytes
31d6608
 
 
262d5d6
 
02cd710
 
 
262d5d6
 
 
 
 
 
 
 
 
 
02cd710
0db0416
 
02cd710
0db0416
 
02cd710
0db0416
 
 
 
 
 
02cd710
0db0416
 
02cd710
0db0416
02cd710
 
 
 
 
 
 
0db0416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
---
**ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance. 
Please find more details in our [paper](https://arxiv.org/abs/2309.11674).

**[ALMA-R](https://arxiv.org/abs/2401.08417) (NEW!) is released now!** ALMA-R builds upon ALMA models, with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!

```
@misc{xu2023paradigm,
      title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models}, 
      author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla},
      year={2023},
      eprint={2309.11674},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
We release six translation models presented in the paper:
- **ALMA-7B**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data
- **ALMA-7B-LoRA**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **LoRA** fine-tune on human-written parallel data
- **ALMA-7B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-7B-LoRA with contrastive preference optimization.
- **ALMA-13B**: Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data
- **ALMA-13B-LoRA** (Our best system): Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then **LoRA** fine-tune on human-written parallel data
- **ALMA-13B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-13B-LoRA with contrastive preference optimization. 
  
Model checkpoints are released at huggingface:
|     Models    | Base Model Link | LoRA Link |
|:-------------:|:---------------:|:---------:|
|    ALMA-7B    |        [haoranxu/ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B)        |     -     |
|  ALMA-7B-LoRA |        [haoranxu/ALMA-7B-Pretrain](https://huggingface.co/haoranxu/ALMA-7B-Pretrain)        |     [haoranxu/ALMA-7B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-7B-Pretrain-LoRA)     |
|  **ALMA-7B-R (NEW!)** |        [haoranxu/ALMA-7B-Pretrain](https://huggingface.co/haoranxu/ALMA-7B-Pretrain)        |     [haoranxu/ALMA-7B-R](https://huggingface.co/haoranxu/ALMA-7B-R)     |
|    ALMA-13B   |        [haoranxu/ALMA-13B](https://huggingface.co/haoranxu/ALMA-13B)        |     -     |
| ALMA-13B-LoRA |        [haoranxu/ALMA-13B-Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain)        |     [haoranxu/ALMA-13B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-13B-Pretrain-LoRA)     |
| **ALMA-13B-R (NEW!)** |        [haoranxu/ALMA-13B-Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain)        |     [haoranxu/ALMA-13B-R](https://huggingface.co/haoranxu/ALMA-13B-R)     |

**Note that `ALMA-7B-Pretrain` and `ALMA-13B-Pretrain` are NOT translation models. They only experience stage 1 monolingual fine-tuning (20B tokens for the 7B model and 12B tokens for the 13B model), and should be utilized in conjunction with their LoRA models.** 

Datasets used by ALMA and ALMA-R are also released at huggingface now (NEW!)
|     Datasets    | Train / Validation| Test |
|:-------------:|:---------------:|:---------:|
|    Human-Written Parallel Data (ALMA)    |        [train and validation](https://huggingface.co/datasets/haoranxu/ALMA-Human-Parallel)        |     [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test)    |
|  Triplet Preference Data |        [train](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference)        |   [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) and [WMT'23](https://huggingface.co/datasets/haoranxu/WMT23-Test)   |

A quick start to use our best system (ALMA-13B-LoRA) for translation. An example of translating "我爱机器翻译。" into English:
```
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM
from transformers import LlamaTokenizer

# Load base model and LoRA weights
model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto")
model = PeftModel.from_pretrained(model, "haoranxu/ALMA-13B-Pretrain-LoRA")
tokenizer = LlamaTokenizer.from_pretrained("haoranxu/ALMA-13B-Pretrain", padding_side='left')

# Add the source setence into the prompt template
prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:"
input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda()

# Translation
with torch.no_grad():
    generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(outputs)
```

Please find more details in our [GitHub repository](https://github.com/fe1ixxu/ALMA)