--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - alignment-handbook - generated_from_trainer datasets: - princeton-nlp/llama3-ultrafeedback model-index: - name: llama-3-8b-instruct-cpo-beta-0.1 results: [] --- # llama-3-8b-instruct-cpo-beta-0.1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback dataset. It achieves the following results on the evaluation set: - Loss: 1.3274 - Rewards/chosen: -13.1885 - Rewards/rejected: -14.3989 - Rewards/accuracies: 0.7016 - Rewards/margins: 1.2104 - Logps/rejected: -143.9887 - Logps/chosen: -131.8848 - Logits/rejected: 0.2135 - Logits/chosen: 0.1708 - Nll Loss: 0.3287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:| | 1.2968 | 0.8547 | 400 | 1.3274 | -13.1885 | -14.3989 | 0.7016 | 1.2104 | -143.9887 | -131.8848 | 0.2135 | 0.1708 | 0.3287 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+rocm6.0 - Datasets 2.19.2 - Tokenizers 0.19.1