#!/usr/bin/env python # coding: utf-8 import os from rknn.api import RKNN from sys import exit import argparse import cv2 import numpy as np os.chdir(os.path.dirname(os.path.abspath(__file__))) seq_lengths = [3000] batch_sizes = [1] mel_size = 128 def convert_encoder(): rknn = RKNN(verbose=True) ONNX_MODEL=f"audio_encoder.onnx" RKNN_MODEL=ONNX_MODEL.replace(".onnx",".rknn") DATASET="dataset.txt" QUANTIZE=False input_shapes = [[[batch_size, mel_size, seq_length], [batch_size, seq_length]] for batch_size in batch_sizes for seq_length in seq_lengths] print(input_shapes) # pre-process config print('--> Config model') rknn.config(quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588', optimization_level=3, dynamic_input=input_shapes) # mean_values=[0.5, 0.5, 0.5], std_values=[0.5, 0.5, 0.5], print('done') # Load ONNX model print("--> Loading model") ret = rknn.load_onnx( model=ONNX_MODEL, ) if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=QUANTIZE, dataset=DATASET, rknn_batch_size=None) if ret != 0: print('Build model failed!') exit(ret) print('done') # export print('--> Export RKNN model') ret = rknn.export_rknn(RKNN_MODEL) if ret != 0: print('Export RKNN model failed!') exit(ret) print('done') # rknn.init_runtime(target='rk3588') # # image embedding # img_path = "test.jpg" # normalize_mean = [0.5, 0.5, 0.5] # normalize_std = [0.5, 0.5, 0.5] # img = cv2.imread(img_path) # img = cv2.resize(img, (448, 448)) # # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # img = img.astype(np.float32) # # img = (img - normalize_mean) / normalize_std # img = img[np.newaxis, :, :, :] # img = img.transpose(0, 3, 1, 2) # np.save("img.npy", img) # rknn.accuracy_analysis(inputs=["img.npy"], target='rk3588') # usage: python convert_rknn.py encoder|all if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("model", type=str, help="model to convert", choices=["encoder", "all"], nargs='?') args = parser.parse_args() if args.model is None: args.model = "all" if args.model == "encoder": convert_encoder() elif args.model == "all": convert_encoder() else: print(f"Unknown model: {args.model}") exit(1)