File size: 1,970 Bytes
379a265
60f25c5
7075ff6
 
 
 
 
 
 
379a265
 
7075ff6
 
379a265
7075ff6
379a265
60f25c5
7075ff6
60f25c5
379a265
7075ff6
379a265
7075ff6
379a265
7075ff6
379a265
7075ff6
379a265
7075ff6
379a265
7075ff6
379a265
7075ff6
379a265
7075ff6
379a265
7075ff6
 
 
 
 
 
 
 
 
 
 
 
379a265
7075ff6
379a265
7075ff6
 
60f25c5
 
 
 
 
 
 
 
 
 
379a265
 
7075ff6
379a265
7075ff6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: shawgpt-ft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# shawgpt-ft

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8143

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.0111        | 0.9231 | 3    | 3.4383          |
| 3.7197        | 1.8462 | 6    | 3.1542          |
| 3.3433        | 2.7692 | 9    | 2.8819          |
| 2.2325        | 4.0    | 13   | 2.5118          |
| 2.6351        | 4.9231 | 16   | 2.2513          |
| 2.298         | 5.8462 | 19   | 2.0509          |
| 2.0805        | 6.7692 | 22   | 1.9310          |
| 1.4903        | 8.0    | 26   | 1.8460          |
| 1.9251        | 8.9231 | 29   | 1.8175          |
| 1.3554        | 9.2308 | 30   | 1.8143          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1