import torch import time import clip from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device) text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device) start_time = time.time() with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) logits_per_image, logits_per_text = model(image, text) probs = logits_per_image.softmax(dim=-1).cpu().numpy() end_time = time.time() print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]] print(f"Prediction time: {end_time - start_time} seconds")