--- license: mit base_model: haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: scenario-KD-PR-MSV-D2_data-cl-cardiff_cl_only44 results: [] --- # scenario-KD-PR-MSV-D2_data-cl-cardiff_cl_only44 This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3590 - Accuracy: 0.4630 - F1: 0.4628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 44 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.09 | 250 | 1.3195 | 0.4390 | 0.4186 | | 1.1991 | 2.17 | 500 | 1.2866 | 0.4537 | 0.4542 | | 1.1991 | 3.26 | 750 | 1.3622 | 0.4383 | 0.4293 | | 1.0569 | 4.35 | 1000 | 1.3662 | 0.4252 | 0.4155 | | 1.0569 | 5.43 | 1250 | 1.3920 | 0.4275 | 0.4229 | | 0.9882 | 6.52 | 1500 | 1.3607 | 0.4560 | 0.4549 | | 0.9882 | 7.61 | 1750 | 1.3742 | 0.4468 | 0.4429 | | 0.9542 | 8.7 | 2000 | 1.4048 | 0.4329 | 0.4284 | | 0.9542 | 9.78 | 2250 | 1.3944 | 0.4344 | 0.4227 | | 0.9374 | 10.87 | 2500 | 1.3725 | 0.4414 | 0.4417 | | 0.9374 | 11.96 | 2750 | 1.3790 | 0.4491 | 0.4464 | | 0.9261 | 13.04 | 3000 | 1.3687 | 0.4552 | 0.4510 | | 0.9261 | 14.13 | 3250 | 1.3778 | 0.4475 | 0.4438 | | 0.9164 | 15.22 | 3500 | 1.3888 | 0.4583 | 0.4554 | | 0.9164 | 16.3 | 3750 | 1.3785 | 0.4498 | 0.4415 | | 0.9101 | 17.39 | 4000 | 1.3778 | 0.4568 | 0.4530 | | 0.9101 | 18.48 | 4250 | 1.4075 | 0.4398 | 0.4261 | | 0.9053 | 19.57 | 4500 | 1.3610 | 0.4576 | 0.4575 | | 0.9053 | 20.65 | 4750 | 1.3679 | 0.4568 | 0.4570 | | 0.9026 | 21.74 | 5000 | 1.3653 | 0.4614 | 0.4617 | | 0.9026 | 22.83 | 5250 | 1.3701 | 0.4468 | 0.4465 | | 0.8977 | 23.91 | 5500 | 1.3753 | 0.4498 | 0.4475 | | 0.8977 | 25.0 | 5750 | 1.3781 | 0.4545 | 0.4532 | | 0.8953 | 26.09 | 6000 | 1.3811 | 0.4468 | 0.4455 | | 0.8953 | 27.17 | 6250 | 1.3609 | 0.4545 | 0.4527 | | 0.893 | 28.26 | 6500 | 1.3696 | 0.4452 | 0.4433 | | 0.893 | 29.35 | 6750 | 1.3590 | 0.4630 | 0.4628 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3