File size: 3,402 Bytes
2bb0790 fa5dbeb 2bb0790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: scenario-KD-SCR-CDF-CL-D2_data-cl-cardiff_cl_only55
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-KD-SCR-CDF-CL-D2_data-cl-cardiff_cl_only55
This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Accuracy: 0.3333
- F1: 0.1667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.09 | 250 | nan | 0.3333 | 0.1667 |
| 1.0762 | 2.17 | 500 | nan | 0.3333 | 0.1667 |
| 1.0762 | 3.26 | 750 | nan | 0.3333 | 0.1667 |
| 0.0 | 4.35 | 1000 | nan | 0.3333 | 0.1667 |
| 0.0 | 5.43 | 1250 | nan | 0.3333 | 0.1667 |
| 0.0 | 6.52 | 1500 | nan | 0.3333 | 0.1667 |
| 0.0 | 7.61 | 1750 | nan | 0.3333 | 0.1667 |
| 0.0 | 8.7 | 2000 | nan | 0.3333 | 0.1667 |
| 0.0 | 9.78 | 2250 | nan | 0.3333 | 0.1667 |
| 0.0 | 10.87 | 2500 | nan | 0.3333 | 0.1667 |
| 0.0 | 11.96 | 2750 | nan | 0.3333 | 0.1667 |
| 0.0 | 13.04 | 3000 | nan | 0.3333 | 0.1667 |
| 0.0 | 14.13 | 3250 | nan | 0.3333 | 0.1667 |
| 0.0 | 15.22 | 3500 | nan | 0.3333 | 0.1667 |
| 0.0 | 16.3 | 3750 | nan | 0.3333 | 0.1667 |
| 0.0 | 17.39 | 4000 | nan | 0.3333 | 0.1667 |
| 0.0 | 18.48 | 4250 | nan | 0.3333 | 0.1667 |
| 0.0 | 19.57 | 4500 | nan | 0.3333 | 0.1667 |
| 0.0 | 20.65 | 4750 | nan | 0.3333 | 0.1667 |
| 0.0 | 21.74 | 5000 | nan | 0.3333 | 0.1667 |
| 0.0 | 22.83 | 5250 | nan | 0.3333 | 0.1667 |
| 0.0 | 23.91 | 5500 | nan | 0.3333 | 0.1667 |
| 0.0 | 25.0 | 5750 | nan | 0.3333 | 0.1667 |
| 0.0 | 26.09 | 6000 | nan | 0.3333 | 0.1667 |
| 0.0 | 27.17 | 6250 | nan | 0.3333 | 0.1667 |
| 0.0 | 28.26 | 6500 | nan | 0.3333 | 0.1667 |
| 0.0 | 29.35 | 6750 | nan | 0.3333 | 0.1667 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
|