File size: 2,841 Bytes
a77f4cb
e2cd0ab
63bffed
a77f4cb
 
 
 
e2cd0ab
 
a77f4cb
 
 
 
 
 
 
 
 
 
 
 
63bffed
 
 
a77f4cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63bffed
a77f4cb
 
63bffed
 
a77f4cb
 
 
 
 
 
63bffed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a77f4cb
 
 
 
63bffed
a77f4cb
 
63bffed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
base_model: haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only
library_name: transformers
license: mit
metrics:
- accuracy
- f1
tags:
- generated_from_trainer
model-index:
- name: scenario-KD-SCR-CDF-EN-FROM-CL-D2_data-en-cardiff_eng_only66
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-KD-SCR-CDF-EN-FROM-CL-D2_data-en-cardiff_eng_only66

This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 533.1400
- Accuracy: 0.3435
- F1: 0.2746

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 66
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| No log        | 1.7391  | 100  | 630.5721        | 0.3347   | 0.2738 |
| No log        | 3.4783  | 200  | 605.2021        | 0.3329   | 0.2631 |
| No log        | 5.2174  | 300  | 588.4736        | 0.3289   | 0.1894 |
| No log        | 6.9565  | 400  | 579.8921        | 0.3302   | 0.2716 |
| 573.1106      | 8.6957  | 500  | 571.2699        | 0.3510   | 0.2838 |
| 573.1106      | 10.4348 | 600  | 564.0858        | 0.3422   | 0.2638 |
| 573.1106      | 12.1739 | 700  | 560.2971        | 0.3364   | 0.2551 |
| 573.1106      | 13.9130 | 800  | 553.0224        | 0.3457   | 0.2748 |
| 573.1106      | 15.6522 | 900  | 549.0078        | 0.3426   | 0.2771 |
| 468.2501      | 17.3913 | 1000 | 545.7394        | 0.3435   | 0.2815 |
| 468.2501      | 19.1304 | 1100 | 541.9386        | 0.3496   | 0.2813 |
| 468.2501      | 20.8696 | 1200 | 539.8362        | 0.3519   | 0.2784 |
| 468.2501      | 22.6087 | 1300 | 537.6076        | 0.3567   | 0.2837 |
| 468.2501      | 24.3478 | 1400 | 535.7779        | 0.3519   | 0.2832 |
| 433.4717      | 26.0870 | 1500 | 533.8346        | 0.3580   | 0.2865 |
| 433.4717      | 27.8261 | 1600 | 533.4024        | 0.3430   | 0.2749 |
| 433.4717      | 29.5652 | 1700 | 533.1400        | 0.3435   | 0.2746 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1