Initial Commit
Browse files- README.md +86 -0
- config.json +53 -0
- eval_result_ner.json +1 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/mdeberta-v3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: scenario-TCR-NER_data-univner_half
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# scenario-TCR-NER_data-univner_half
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1170
|
24 |
+
- Precision: 0.8494
|
25 |
+
- Recall: 0.8655
|
26 |
+
- F1: 0.8574
|
27 |
+
- Accuracy: 0.9842
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 30
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.1168 | 0.58 | 500 | 0.0625 | 0.8182 | 0.8512 | 0.8344 | 0.9825 |
|
59 |
+
| 0.0433 | 1.17 | 1000 | 0.0594 | 0.8396 | 0.8632 | 0.8512 | 0.9843 |
|
60 |
+
| 0.0305 | 1.75 | 1500 | 0.0677 | 0.8296 | 0.8703 | 0.8495 | 0.9836 |
|
61 |
+
| 0.0213 | 2.33 | 2000 | 0.0761 | 0.8253 | 0.8833 | 0.8533 | 0.9839 |
|
62 |
+
| 0.0185 | 2.91 | 2500 | 0.0738 | 0.8600 | 0.8612 | 0.8606 | 0.9850 |
|
63 |
+
| 0.012 | 3.5 | 3000 | 0.0784 | 0.8374 | 0.8572 | 0.8471 | 0.9835 |
|
64 |
+
| 0.0124 | 4.08 | 3500 | 0.0832 | 0.8363 | 0.8704 | 0.8530 | 0.9843 |
|
65 |
+
| 0.0095 | 4.66 | 4000 | 0.0806 | 0.8423 | 0.8713 | 0.8565 | 0.9845 |
|
66 |
+
| 0.008 | 5.24 | 4500 | 0.1049 | 0.8218 | 0.8625 | 0.8417 | 0.9823 |
|
67 |
+
| 0.0071 | 5.83 | 5000 | 0.0879 | 0.8420 | 0.8632 | 0.8525 | 0.9842 |
|
68 |
+
| 0.0068 | 6.41 | 5500 | 0.0918 | 0.8507 | 0.8733 | 0.8619 | 0.9846 |
|
69 |
+
| 0.0058 | 6.99 | 6000 | 0.0951 | 0.8488 | 0.8667 | 0.8577 | 0.9845 |
|
70 |
+
| 0.0047 | 7.58 | 6500 | 0.0991 | 0.8467 | 0.8651 | 0.8558 | 0.9842 |
|
71 |
+
| 0.0047 | 8.16 | 7000 | 0.1025 | 0.8603 | 0.8573 | 0.8588 | 0.9845 |
|
72 |
+
| 0.0043 | 8.74 | 7500 | 0.1020 | 0.8473 | 0.8678 | 0.8574 | 0.9845 |
|
73 |
+
| 0.0031 | 9.32 | 8000 | 0.1085 | 0.8437 | 0.8582 | 0.8509 | 0.9842 |
|
74 |
+
| 0.0038 | 9.91 | 8500 | 0.1082 | 0.8602 | 0.8440 | 0.8520 | 0.9839 |
|
75 |
+
| 0.0024 | 10.49 | 9000 | 0.1163 | 0.8533 | 0.8544 | 0.8539 | 0.9838 |
|
76 |
+
| 0.0038 | 11.07 | 9500 | 0.1139 | 0.8528 | 0.8567 | 0.8548 | 0.9843 |
|
77 |
+
| 0.0024 | 11.66 | 10000 | 0.1130 | 0.8619 | 0.8476 | 0.8547 | 0.9841 |
|
78 |
+
| 0.0024 | 12.24 | 10500 | 0.1170 | 0.8494 | 0.8655 | 0.8574 | 0.9842 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.33.3
|
84 |
+
- Pytorch 2.1.1+cu121
|
85 |
+
- Datasets 2.14.5
|
86 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/mdeberta-v3-base",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2ForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "LABEL_0",
|
12 |
+
"1": "LABEL_1",
|
13 |
+
"2": "LABEL_2",
|
14 |
+
"3": "LABEL_3",
|
15 |
+
"4": "LABEL_4",
|
16 |
+
"5": "LABEL_5",
|
17 |
+
"6": "LABEL_6"
|
18 |
+
},
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 3072,
|
21 |
+
"label2id": {
|
22 |
+
"LABEL_0": 0,
|
23 |
+
"LABEL_1": 1,
|
24 |
+
"LABEL_2": 2,
|
25 |
+
"LABEL_3": 3,
|
26 |
+
"LABEL_4": 4,
|
27 |
+
"LABEL_5": 5,
|
28 |
+
"LABEL_6": 6
|
29 |
+
},
|
30 |
+
"layer_norm_eps": 1e-07,
|
31 |
+
"max_position_embeddings": 512,
|
32 |
+
"max_relative_positions": -1,
|
33 |
+
"model_type": "deberta-v2",
|
34 |
+
"norm_rel_ebd": "layer_norm",
|
35 |
+
"num_attention_heads": 12,
|
36 |
+
"num_hidden_layers": 12,
|
37 |
+
"pad_token_id": 0,
|
38 |
+
"pooler_dropout": 0,
|
39 |
+
"pooler_hidden_act": "gelu",
|
40 |
+
"pooler_hidden_size": 768,
|
41 |
+
"pos_att_type": [
|
42 |
+
"p2c",
|
43 |
+
"c2p"
|
44 |
+
],
|
45 |
+
"position_biased_input": false,
|
46 |
+
"position_buckets": 256,
|
47 |
+
"relative_attention": true,
|
48 |
+
"share_att_key": true,
|
49 |
+
"torch_dtype": "float32",
|
50 |
+
"transformers_version": "4.33.3",
|
51 |
+
"type_vocab_size": 0,
|
52 |
+
"vocab_size": 251000
|
53 |
+
}
|
eval_result_ner.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"zh_gsd": {"precision": 0.8458646616541353, "recall": 0.8800521512385919, "f1": 0.8626198083067093, "accuracy": 0.9806859806859807}, "zh_gsdsimp": {"precision": 0.8640406607369758, "recall": 0.891218872870249, "f1": 0.8774193548387097, "accuracy": 0.9823509823509824}, "hr_set": {"precision": 0.9101508916323731, "recall": 0.9458303635067712, "f1": 0.9276476756378887, "accuracy": 0.990560593569662}, "da_ddt": {"precision": 0.8681818181818182, "recall": 0.854586129753915, "f1": 0.8613303269447576, "accuracy": 0.9895240945824604}, "en_ewt": {"precision": 0.836555360281195, "recall": 0.875, "f1": 0.8553459119496856, "accuracy": 0.9850579750567797}, "pt_bosque": {"precision": 0.8723404255319149, "recall": 0.8436213991769548, "f1": 0.8577405857740587, "accuracy": 0.9858716128097377}, "sr_set": {"precision": 0.9494117647058824, "recall": 0.9527744982290437, "f1": 0.9510901591043017, "accuracy": 0.990631293231766}, "sk_snk": {"precision": 0.8242229367631297, "recall": 0.8404371584699454, "f1": 0.8322510822510822, "accuracy": 0.9757380653266332}, "sv_talbanken": {"precision": 0.7763713080168776, "recall": 0.9387755102040817, "f1": 0.8498845265588915, "accuracy": 0.9969082789419443}}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b17284dbdc47a46c624b01a42698c89dde812636572a5924ce8bda92d62475f5
|
3 |
+
size 1112965930
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2af879047a05ce26c181c49037265b598df6baec29f1ae74753378b1c252b119
|
3 |
+
size 4536
|