--- license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - massive metrics: - accuracy - f1 model-index: - name: scenario-TCR_data-AmazonScience_massive_all_1_1 results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: all_1.1 split: validation args: all_1.1 metrics: - name: Accuracy type: accuracy value: 0.8558780127889818 - name: F1 type: f1 value: 0.8318635435156069 --- # scenario-TCR_data-AmazonScience_massive_all_1_1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.9483 - Accuracy: 0.8559 - F1: 0.8319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.519 | 0.27 | 5000 | 0.6915 | 0.8379 | 0.7941 | | 0.3806 | 0.53 | 10000 | 0.6969 | 0.8468 | 0.8063 | | 0.3259 | 0.8 | 15000 | 0.6916 | 0.8515 | 0.8159 | | 0.2379 | 1.07 | 20000 | 0.7826 | 0.8505 | 0.8191 | | 0.236 | 1.34 | 25000 | 0.7514 | 0.8508 | 0.8189 | | 0.2298 | 1.6 | 30000 | 0.7719 | 0.8526 | 0.8267 | | 0.2169 | 1.87 | 35000 | 0.8162 | 0.8505 | 0.8265 | | 0.164 | 2.14 | 40000 | 0.8316 | 0.8549 | 0.8272 | | 0.1684 | 2.41 | 45000 | 0.8123 | 0.8513 | 0.8204 | | 0.158 | 2.67 | 50000 | 0.8252 | 0.8556 | 0.8309 | | 0.1761 | 2.94 | 55000 | 0.8092 | 0.8545 | 0.8287 | | 0.1378 | 3.21 | 60000 | 0.8574 | 0.8607 | 0.8357 | | 0.1399 | 3.47 | 65000 | 0.8976 | 0.8572 | 0.8359 | | 0.1431 | 3.74 | 70000 | 0.8908 | 0.8536 | 0.8350 | | 0.1249 | 4.01 | 75000 | 0.9613 | 0.8533 | 0.8292 | | 0.1129 | 4.28 | 80000 | 0.9511 | 0.8543 | 0.8306 | | 0.1143 | 4.54 | 85000 | 0.9001 | 0.8563 | 0.8331 | | 0.122 | 4.81 | 90000 | 0.9483 | 0.8559 | 0.8319 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3