--- license: mit base_model: haryoaw/scenario-TCR-NER_data-univner_half tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scenario-kd-po-ner-full-mdeberta-halfen_data-univner_en66 results: [] --- # scenario-kd-po-ner-full-mdeberta-halfen_data-univner_en66 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset. It achieves the following results on the evaluation set: - Loss: 63.9106 - Precision: 0.7647 - Recall: 0.7671 - F1: 0.7659 - Accuracy: 0.9812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 66 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 115.4337 | 1.28 | 500 | 89.9508 | 0.6039 | 0.5114 | 0.5538 | 0.9672 | | 81.5056 | 2.55 | 1000 | 78.2589 | 0.7137 | 0.7019 | 0.7077 | 0.9781 | | 73.2299 | 3.83 | 1500 | 72.9013 | 0.7153 | 0.7360 | 0.7255 | 0.9791 | | 68.3008 | 5.1 | 2000 | 69.0462 | 0.7313 | 0.7692 | 0.7497 | 0.9806 | | 64.8932 | 6.38 | 2500 | 66.5653 | 0.7296 | 0.7516 | 0.7404 | 0.9796 | | 62.7315 | 7.65 | 3000 | 64.7790 | 0.7677 | 0.7526 | 0.7601 | 0.9808 | | 61.2637 | 8.93 | 3500 | 63.9106 | 0.7647 | 0.7671 | 0.7659 | 0.9812 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3