File size: 4,858 Bytes
27373a4
d3ac49b
27373a4
 
 
 
 
 
 
d3ac49b
 
27373a4
 
 
 
 
 
 
 
 
 
 
 
478b5ad
 
 
 
 
27373a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478b5ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27373a4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
base_model: haryoaw/scenario-TCR-NER_data-univner_full
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-po-ner-full-mdeberta_data-univner_full55
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-kd-po-ner-full-mdeberta_data-univner_full55

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 46.9305
- Precision: 0.8196
- Recall: 0.8292
- F1: 0.8244
- Accuracy: 0.9823

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 55
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 135.8523      | 0.2911 | 500   | 108.5680        | 0.5906    | 0.3842 | 0.4656 | 0.9517   |
| 100.5734      | 0.5822 | 1000  | 94.6790         | 0.7351    | 0.6641 | 0.6978 | 0.9712   |
| 91.2154       | 0.8732 | 1500  | 88.0640         | 0.7607    | 0.7570 | 0.7588 | 0.9762   |
| 85.164        | 1.1643 | 2000  | 83.3722         | 0.8082    | 0.7302 | 0.7672 | 0.9767   |
| 80.2474       | 1.4554 | 2500  | 78.9752         | 0.7780    | 0.7925 | 0.7852 | 0.9791   |
| 76.4386       | 1.7465 | 3000  | 75.6330         | 0.8035    | 0.7945 | 0.7990 | 0.9801   |
| 73.0828       | 2.0375 | 3500  | 72.4945         | 0.7997    | 0.7970 | 0.7983 | 0.9804   |
| 69.7284       | 2.3286 | 4000  | 69.7705         | 0.7983    | 0.8048 | 0.8016 | 0.9804   |
| 67.0314       | 2.6197 | 4500  | 67.3742         | 0.8113    | 0.7970 | 0.8041 | 0.9805   |
| 64.9596       | 2.9108 | 5000  | 65.2223         | 0.8108    | 0.8025 | 0.8066 | 0.9805   |
| 62.6221       | 3.2019 | 5500  | 63.1795         | 0.8049    | 0.8169 | 0.8109 | 0.9810   |
| 60.6361       | 3.4929 | 6000  | 61.4200         | 0.8124    | 0.8186 | 0.8155 | 0.9814   |
| 58.8661       | 3.7840 | 6500  | 59.9772         | 0.8102    | 0.8192 | 0.8147 | 0.9815   |
| 57.5058       | 4.0751 | 7000  | 58.4410         | 0.8114    | 0.8168 | 0.8141 | 0.9811   |
| 55.9259       | 4.3662 | 7500  | 57.1486         | 0.8151    | 0.8179 | 0.8165 | 0.9814   |
| 54.6494       | 4.6573 | 8000  | 55.9362         | 0.8206    | 0.8155 | 0.8180 | 0.9814   |
| 53.5407       | 4.9483 | 8500  | 54.8810         | 0.8152    | 0.8205 | 0.8179 | 0.9816   |
| 52.3581       | 5.2394 | 9000  | 53.9021         | 0.8169    | 0.8266 | 0.8217 | 0.9816   |
| 51.3581       | 5.5305 | 9500  | 53.0325         | 0.8200    | 0.8204 | 0.8202 | 0.9816   |
| 50.5535       | 5.8216 | 10000 | 52.1425         | 0.8182    | 0.8282 | 0.8232 | 0.9818   |
| 49.8392       | 6.1126 | 10500 | 51.4247         | 0.8178    | 0.8254 | 0.8216 | 0.9817   |
| 48.9716       | 6.4037 | 11000 | 50.6978         | 0.8191    | 0.8338 | 0.8264 | 0.9823   |
| 48.3296       | 6.6948 | 11500 | 50.1578         | 0.8164    | 0.8290 | 0.8227 | 0.9818   |
| 47.712        | 6.9859 | 12000 | 49.5760         | 0.8234    | 0.8266 | 0.8250 | 0.9824   |
| 47.0545       | 7.2770 | 12500 | 49.0523         | 0.8227    | 0.8354 | 0.8290 | 0.9821   |
| 46.6326       | 7.5680 | 13000 | 48.6282         | 0.8174    | 0.8287 | 0.8230 | 0.9820   |
| 46.2306       | 7.8591 | 13500 | 48.2713         | 0.8208    | 0.8254 | 0.8231 | 0.9819   |
| 45.9118       | 8.1502 | 14000 | 47.9235         | 0.8185    | 0.8259 | 0.8222 | 0.9817   |
| 45.5272       | 8.4413 | 14500 | 47.6086         | 0.8241    | 0.8259 | 0.8250 | 0.9822   |
| 45.2228       | 8.7324 | 15000 | 47.3476         | 0.8250    | 0.8321 | 0.8285 | 0.9822   |
| 44.9978       | 9.0234 | 15500 | 47.1635         | 0.8204    | 0.8263 | 0.8233 | 0.9821   |
| 44.8309       | 9.3145 | 16000 | 47.0839         | 0.8264    | 0.8285 | 0.8274 | 0.9821   |
| 44.6998       | 9.6056 | 16500 | 46.9565         | 0.8228    | 0.8292 | 0.8260 | 0.9824   |
| 44.6759       | 9.8967 | 17000 | 46.9305         | 0.8196    | 0.8292 | 0.8244 | 0.9823   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1