Initial Commit
Browse files- README.md +102 -0
- config.json +53 -0
- eval_result_ner.json +1 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: haryoaw/scenario-TCR-NER_data-univner_full
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: scenario-kd-po-ner-full-mdeberta_data-univner_full66
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# scenario-kd-po-ner-full-mdeberta_data-univner_full66
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.2476
|
25 |
+
- Precision: 0.8200
|
26 |
+
- Recall: 0.8197
|
27 |
+
- F1: 0.8198
|
28 |
+
- Accuracy: 0.9813
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 8
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 66
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 32
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 10
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
60 |
+
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
61 |
+
| 1.199 | 0.2911 | 500 | 0.6605 | 0.5339 | 0.5311 | 0.5325 | 0.9554 |
|
62 |
+
| 0.5861 | 0.5822 | 1000 | 0.4717 | 0.6657 | 0.6788 | 0.6722 | 0.9691 |
|
63 |
+
| 0.4428 | 0.8732 | 1500 | 0.4097 | 0.7062 | 0.7338 | 0.7197 | 0.9729 |
|
64 |
+
| 0.3682 | 1.1643 | 2000 | 0.3621 | 0.7544 | 0.7599 | 0.7571 | 0.9759 |
|
65 |
+
| 0.3192 | 1.4554 | 2500 | 0.3490 | 0.7587 | 0.7756 | 0.7671 | 0.9767 |
|
66 |
+
| 0.2984 | 1.7465 | 3000 | 0.3384 | 0.7618 | 0.7767 | 0.7692 | 0.9768 |
|
67 |
+
| 0.2751 | 2.0375 | 3500 | 0.3231 | 0.7827 | 0.7869 | 0.7848 | 0.9782 |
|
68 |
+
| 0.2403 | 2.3286 | 4000 | 0.3070 | 0.7924 | 0.8033 | 0.7978 | 0.9794 |
|
69 |
+
| 0.2399 | 2.6197 | 4500 | 0.3047 | 0.7893 | 0.7950 | 0.7921 | 0.9793 |
|
70 |
+
| 0.2299 | 2.9108 | 5000 | 0.2929 | 0.7895 | 0.8129 | 0.8010 | 0.9796 |
|
71 |
+
| 0.2065 | 3.2019 | 5500 | 0.2914 | 0.7978 | 0.8098 | 0.8038 | 0.9800 |
|
72 |
+
| 0.2009 | 3.4929 | 6000 | 0.2837 | 0.8048 | 0.8016 | 0.8032 | 0.9800 |
|
73 |
+
| 0.1956 | 3.7840 | 6500 | 0.2817 | 0.7960 | 0.8195 | 0.8076 | 0.9798 |
|
74 |
+
| 0.1914 | 4.0751 | 7000 | 0.2772 | 0.8027 | 0.8114 | 0.8071 | 0.9804 |
|
75 |
+
| 0.1789 | 4.3662 | 7500 | 0.2737 | 0.8046 | 0.8163 | 0.8104 | 0.9805 |
|
76 |
+
| 0.1769 | 4.6573 | 8000 | 0.2748 | 0.8108 | 0.8104 | 0.8106 | 0.9805 |
|
77 |
+
| 0.1739 | 4.9483 | 8500 | 0.2659 | 0.8093 | 0.8124 | 0.8109 | 0.9805 |
|
78 |
+
| 0.1655 | 5.2394 | 9000 | 0.2669 | 0.8033 | 0.8178 | 0.8105 | 0.9806 |
|
79 |
+
| 0.1638 | 5.5305 | 9500 | 0.2633 | 0.8051 | 0.8153 | 0.8102 | 0.9805 |
|
80 |
+
| 0.1612 | 5.8216 | 10000 | 0.2612 | 0.8129 | 0.8181 | 0.8155 | 0.9810 |
|
81 |
+
| 0.1574 | 6.1126 | 10500 | 0.2564 | 0.8108 | 0.8269 | 0.8188 | 0.9811 |
|
82 |
+
| 0.1534 | 6.4037 | 11000 | 0.2593 | 0.8163 | 0.8106 | 0.8134 | 0.9809 |
|
83 |
+
| 0.153 | 6.6948 | 11500 | 0.2542 | 0.8125 | 0.8215 | 0.8170 | 0.9811 |
|
84 |
+
| 0.1511 | 6.9859 | 12000 | 0.2545 | 0.8137 | 0.8218 | 0.8177 | 0.9809 |
|
85 |
+
| 0.1464 | 7.2770 | 12500 | 0.2534 | 0.8120 | 0.8264 | 0.8192 | 0.9813 |
|
86 |
+
| 0.1466 | 7.5680 | 13000 | 0.2516 | 0.8181 | 0.8259 | 0.8219 | 0.9813 |
|
87 |
+
| 0.1455 | 7.8591 | 13500 | 0.2513 | 0.8168 | 0.8212 | 0.8190 | 0.9813 |
|
88 |
+
| 0.1445 | 8.1502 | 14000 | 0.2514 | 0.8270 | 0.8133 | 0.8201 | 0.9811 |
|
89 |
+
| 0.1406 | 8.4413 | 14500 | 0.2492 | 0.8157 | 0.8254 | 0.8205 | 0.9813 |
|
90 |
+
| 0.141 | 8.7324 | 15000 | 0.2483 | 0.8243 | 0.8228 | 0.8235 | 0.9815 |
|
91 |
+
| 0.1423 | 9.0234 | 15500 | 0.2469 | 0.8210 | 0.8155 | 0.8182 | 0.9812 |
|
92 |
+
| 0.1408 | 9.3145 | 16000 | 0.2462 | 0.8236 | 0.8221 | 0.8229 | 0.9817 |
|
93 |
+
| 0.1387 | 9.6056 | 16500 | 0.2475 | 0.8204 | 0.8227 | 0.8216 | 0.9814 |
|
94 |
+
| 0.1387 | 9.8967 | 17000 | 0.2476 | 0.8200 | 0.8197 | 0.8198 | 0.9813 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.44.2
|
100 |
+
- Pytorch 2.1.1+cu121
|
101 |
+
- Datasets 2.14.5
|
102 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_full",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaForTokenClassificationKD"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "LABEL_0",
|
12 |
+
"1": "LABEL_1",
|
13 |
+
"2": "LABEL_2",
|
14 |
+
"3": "LABEL_3",
|
15 |
+
"4": "LABEL_4",
|
16 |
+
"5": "LABEL_5",
|
17 |
+
"6": "LABEL_6"
|
18 |
+
},
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 3072,
|
21 |
+
"label2id": {
|
22 |
+
"LABEL_0": 0,
|
23 |
+
"LABEL_1": 1,
|
24 |
+
"LABEL_2": 2,
|
25 |
+
"LABEL_3": 3,
|
26 |
+
"LABEL_4": 4,
|
27 |
+
"LABEL_5": 5,
|
28 |
+
"LABEL_6": 6
|
29 |
+
},
|
30 |
+
"layer_norm_eps": 1e-07,
|
31 |
+
"max_position_embeddings": 512,
|
32 |
+
"max_relative_positions": -1,
|
33 |
+
"model_type": "deberta-v2",
|
34 |
+
"norm_rel_ebd": "layer_norm",
|
35 |
+
"num_attention_heads": 12,
|
36 |
+
"num_hidden_layers": 6,
|
37 |
+
"pad_token_id": 0,
|
38 |
+
"pooler_dropout": 0,
|
39 |
+
"pooler_hidden_act": "gelu",
|
40 |
+
"pooler_hidden_size": 768,
|
41 |
+
"pos_att_type": [
|
42 |
+
"p2c",
|
43 |
+
"c2p"
|
44 |
+
],
|
45 |
+
"position_biased_input": false,
|
46 |
+
"position_buckets": 256,
|
47 |
+
"relative_attention": true,
|
48 |
+
"share_att_key": true,
|
49 |
+
"torch_dtype": "float32",
|
50 |
+
"transformers_version": "4.44.2",
|
51 |
+
"type_vocab_size": 0,
|
52 |
+
"vocab_size": 251000
|
53 |
+
}
|
eval_result_ner.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ceb_gja": {"precision": 0.6060606060606061, "recall": 0.8163265306122449, "f1": 0.6956521739130436, "accuracy": 0.972972972972973}, "en_pud": {"precision": 0.7842565597667639, "recall": 0.7506976744186047, "f1": 0.7671102661596959, "accuracy": 0.9774272761616924}, "de_pud": {"precision": 0.7373447946513849, "recall": 0.7430221366698749, "f1": 0.7401725790987536, "accuracy": 0.9728564061694248}, "pt_pud": {"precision": 0.832, "recall": 0.8516833484986351, "f1": 0.841726618705036, "accuracy": 0.9845345409492887}, "ru_pud": {"precision": 0.669452181987001, "recall": 0.6959459459459459, "f1": 0.6824420255560815, "accuracy": 0.9682252647894601}, "sv_pud": {"precision": 0.8427991886409736, "recall": 0.8075801749271136, "f1": 0.8248138957816376, "accuracy": 0.982543510169847}, "tl_trg": {"precision": 0.5806451612903226, "recall": 0.782608695652174, "f1": 0.6666666666666667, "accuracy": 0.9795640326975477}, "tl_ugnayan": {"precision": 0.5111111111111111, "recall": 0.696969696969697, "f1": 0.5897435897435898, "accuracy": 0.9690063810391978}, "zh_gsd": {"precision": 0.8, "recall": 0.8135593220338984, "f1": 0.8067226890756303, "accuracy": 0.9732767232767233}, "zh_gsdsimp": {"precision": 0.7976653696498055, "recall": 0.8060288335517694, "f1": 0.8018252933507172, "accuracy": 0.9726107226107226}, "hr_set": {"precision": 0.8831808585503167, "recall": 0.894511760513186, "f1": 0.8888101983002833, "accuracy": 0.9865622423742787}, "da_ddt": {"precision": 0.8619854721549637, "recall": 0.796420581655481, "f1": 0.827906976744186, "accuracy": 0.9866307492766637}, "en_ewt": {"precision": 0.8189823874755382, "recall": 0.7693014705882353, "f1": 0.7933649289099527, "accuracy": 0.9778459576841854}, "pt_bosque": {"precision": 0.8421913327882257, "recall": 0.8477366255144033, "f1": 0.844954881050041, "accuracy": 0.9858353861759165}, "sr_set": {"precision": 0.9253554502369669, "recall": 0.922077922077922, "f1": 0.9237137788290953, "accuracy": 0.9881796690307328}, "sk_snk": {"precision": 0.7959667852906287, "recall": 0.7333333333333333, "f1": 0.7633674630261661, "accuracy": 0.9673366834170855}, "sv_talbanken": {"precision": 0.8446601941747572, "recall": 0.8877551020408163, "f1": 0.8656716417910448, "accuracy": 0.997399028316239}}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e99bb9dd2f2a8347137be9a8b99683d69b1d676121cb1c98b9385b5efe556edd
|
3 |
+
size 944366708
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:965e521a6547268d6d304ac2b2a6812c6ae6c70defcac10c4b79df7b7214a53b
|
3 |
+
size 5304
|