File size: 3,241 Bytes
0ccec06
9383a47
0ccec06
 
 
 
 
 
 
9383a47
 
0ccec06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
base_model: haryoaw/scenario-TCR-NER_data-univner_half
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-po-ner-full-mdeberta_data-univner_half44
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-kd-po-ner-full-mdeberta_data-univner_half44

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 61.3215
- Precision: 0.7767
- Recall: 0.7826
- F1: 0.7796
- Accuracy: 0.9781

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 44
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 134.7601      | 0.5828 | 500  | 105.4285        | 0.6228    | 0.4135 | 0.4970 | 0.9475   |
| 96.6208       | 1.1655 | 1000 | 91.3605         | 0.7044    | 0.6166 | 0.6576 | 0.9679   |
| 84.9489       | 1.7483 | 1500 | 84.4145         | 0.7378    | 0.7175 | 0.7275 | 0.9735   |
| 78.4875       | 2.3310 | 2000 | 79.7743         | 0.7268    | 0.7713 | 0.7484 | 0.9753   |
| 73.8037       | 2.9138 | 2500 | 76.5950         | 0.7425    | 0.7393 | 0.7409 | 0.9752   |
| 69.9903       | 3.4965 | 3000 | 73.3846         | 0.7568    | 0.7804 | 0.7684 | 0.9769   |
| 66.64         | 4.0793 | 3500 | 70.9653         | 0.7632    | 0.7647 | 0.7640 | 0.9772   |
| 63.8746       | 4.6620 | 4000 | 68.7757         | 0.7722    | 0.7560 | 0.7640 | 0.9769   |
| 61.8679       | 5.2448 | 4500 | 67.0563         | 0.7822    | 0.7667 | 0.7744 | 0.9776   |
| 60.0989       | 5.8275 | 5000 | 65.7140         | 0.7687    | 0.7730 | 0.7709 | 0.9772   |
| 58.5339       | 6.4103 | 5500 | 64.4640         | 0.7721    | 0.7827 | 0.7774 | 0.9780   |
| 57.5319       | 6.9930 | 6000 | 63.4900         | 0.7793    | 0.7768 | 0.7780 | 0.9778   |
| 56.4947       | 7.5758 | 6500 | 62.8514         | 0.7706    | 0.7811 | 0.7758 | 0.9776   |
| 55.6103       | 8.1585 | 7000 | 62.1384         | 0.7772    | 0.7784 | 0.7778 | 0.9781   |
| 55.1971       | 8.7413 | 7500 | 61.7481         | 0.7837    | 0.7784 | 0.7810 | 0.9783   |
| 54.7227       | 9.3240 | 8000 | 61.4653         | 0.7765    | 0.7863 | 0.7814 | 0.9784   |
| 54.4924       | 9.9068 | 8500 | 61.3215         | 0.7767    | 0.7826 | 0.7796 | 0.9781   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1