--- base_model: haryoaw/scenario-TCR-NER_data-univner_half library_name: transformers license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: scenario-kd-po-ner-full-mdeberta_data-univner_half55 results: [] --- # scenario-kd-po-ner-full-mdeberta_data-univner_half55 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset. It achieves the following results on the evaluation set: - Loss: 61.3798 - Precision: 0.7820 - Recall: 0.7775 - F1: 0.7798 - Accuracy: 0.9778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 55 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 134.7409 | 0.5828 | 500 | 105.3598 | 0.6084 | 0.4377 | 0.5091 | 0.9490 | | 96.012 | 1.1655 | 1000 | 90.6475 | 0.6858 | 0.7153 | 0.7003 | 0.9708 | | 85.0907 | 1.7483 | 1500 | 84.2206 | 0.7177 | 0.7448 | 0.7310 | 0.9739 | | 78.2732 | 2.3310 | 2000 | 79.7850 | 0.7312 | 0.7697 | 0.7500 | 0.9752 | | 73.6913 | 2.9138 | 2500 | 76.1999 | 0.7601 | 0.7527 | 0.7564 | 0.9760 | | 69.7676 | 3.4965 | 3000 | 73.2988 | 0.7666 | 0.7575 | 0.7620 | 0.9765 | | 66.6414 | 4.0793 | 3500 | 70.8495 | 0.7711 | 0.7563 | 0.7636 | 0.9766 | | 64.0181 | 4.6620 | 4000 | 68.8880 | 0.7808 | 0.7560 | 0.7682 | 0.9770 | | 61.881 | 5.2448 | 4500 | 67.1248 | 0.7702 | 0.7703 | 0.7703 | 0.9771 | | 60.1233 | 5.8275 | 5000 | 65.7057 | 0.7849 | 0.7521 | 0.7681 | 0.9766 | | 58.4747 | 6.4103 | 5500 | 64.4473 | 0.7744 | 0.7736 | 0.7740 | 0.9774 | | 57.511 | 6.9930 | 6000 | 63.5221 | 0.7731 | 0.7808 | 0.7770 | 0.9776 | | 56.432 | 7.5758 | 6500 | 62.8477 | 0.7803 | 0.7723 | 0.7763 | 0.9776 | | 55.7061 | 8.1585 | 7000 | 62.2029 | 0.7715 | 0.7794 | 0.7754 | 0.9776 | | 55.1513 | 8.7413 | 7500 | 61.7137 | 0.7808 | 0.7797 | 0.7802 | 0.9783 | | 54.7004 | 9.3240 | 8000 | 61.5394 | 0.7824 | 0.7817 | 0.7820 | 0.9782 | | 54.5449 | 9.9068 | 8500 | 61.3798 | 0.7820 | 0.7775 | 0.7798 | 0.9778 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1