--- base_model: haryoaw/scenario-TCR-NER_data-univner_half library_name: transformers license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: scenario-kd-po-ner-full-mdeberta_data-univner_half66 results: [] --- # scenario-kd-po-ner-full-mdeberta_data-univner_half66 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset. It achieves the following results on the evaluation set: - Loss: 61.4326 - Precision: 0.7814 - Recall: 0.7843 - F1: 0.7828 - Accuracy: 0.9782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 66 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 134.73 | 0.5828 | 500 | 105.2633 | 0.6123 | 0.4383 | 0.5109 | 0.9484 | | 96.7289 | 1.1655 | 1000 | 90.9748 | 0.6784 | 0.7067 | 0.6922 | 0.9701 | | 84.9234 | 1.7483 | 1500 | 84.4287 | 0.7249 | 0.7498 | 0.7372 | 0.9740 | | 78.4497 | 2.3310 | 2000 | 79.9555 | 0.7503 | 0.7396 | 0.7449 | 0.9748 | | 73.644 | 2.9138 | 2500 | 76.3575 | 0.7372 | 0.7624 | 0.7496 | 0.9760 | | 69.6629 | 3.4965 | 3000 | 73.5820 | 0.7391 | 0.7533 | 0.7461 | 0.9755 | | 66.745 | 4.0793 | 3500 | 70.9258 | 0.7720 | 0.7482 | 0.7599 | 0.9767 | | 63.9726 | 4.6620 | 4000 | 68.9640 | 0.7699 | 0.7423 | 0.7558 | 0.9763 | | 61.778 | 5.2448 | 4500 | 67.0742 | 0.7621 | 0.7782 | 0.7701 | 0.9769 | | 60.0151 | 5.8275 | 5000 | 65.6493 | 0.7804 | 0.7687 | 0.7745 | 0.9769 | | 58.5554 | 6.4103 | 5500 | 64.3968 | 0.7767 | 0.7814 | 0.7791 | 0.9779 | | 57.4554 | 6.9930 | 6000 | 63.7199 | 0.7844 | 0.7664 | 0.7753 | 0.9775 | | 56.436 | 7.5758 | 6500 | 62.7811 | 0.7705 | 0.7847 | 0.7776 | 0.9777 | | 55.6938 | 8.1585 | 7000 | 62.2272 | 0.7806 | 0.7791 | 0.7798 | 0.9781 | | 55.105 | 8.7413 | 7500 | 61.7833 | 0.7791 | 0.7839 | 0.7815 | 0.9780 | | 54.7106 | 9.3240 | 8000 | 61.5408 | 0.7820 | 0.7895 | 0.7858 | 0.9782 | | 54.5482 | 9.9068 | 8500 | 61.4326 | 0.7814 | 0.7843 | 0.7828 | 0.9782 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1