--- license: mit base_model: haryoaw/scenario-TCR-NER_data-univner_half tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scenario-kd-po-ner-full-xlmr-halfen_data-univner_en66 results: [] --- # scenario-kd-po-ner-full-xlmr-halfen_data-univner_en66 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset. It achieves the following results on the evaluation set: - Loss: 51.2856 - Precision: 0.7594 - Recall: 0.7774 - F1: 0.7683 - Accuracy: 0.9817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 66 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 84.3552 | 1.28 | 500 | 68.3345 | 0.7409 | 0.7164 | 0.7284 | 0.9800 | | 61.0034 | 2.55 | 1000 | 61.0553 | 0.7614 | 0.7267 | 0.7436 | 0.9808 | | 55.416 | 3.83 | 1500 | 57.0152 | 0.7573 | 0.7557 | 0.7565 | 0.9811 | | 52.1923 | 5.1 | 2000 | 54.4194 | 0.7455 | 0.7671 | 0.7561 | 0.9813 | | 50.0905 | 6.38 | 2500 | 52.9010 | 0.7549 | 0.7557 | 0.7553 | 0.9814 | | 48.6873 | 7.65 | 3000 | 51.8337 | 0.7452 | 0.7598 | 0.7524 | 0.9815 | | 47.8926 | 8.93 | 3500 | 51.2856 | 0.7594 | 0.7774 | 0.7683 | 0.9817 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3