haryoaw commited on
Commit
dbb5a25
1 Parent(s): 63e94a8

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +85 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-kd-po-ner-full-xlmr_data-univner_half44
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-kd-po-ner-full-xlmr_data-univner_half44
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 53.5855
25
+ - Precision: 0.7926
26
+ - Recall: 0.7941
27
+ - F1: 0.7934
28
+ - Accuracy: 0.9792
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 32
50
+ - seed: 44
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 94.1316 | 0.5828 | 500 | 77.7639 | 0.7573 | 0.7254 | 0.7410 | 0.9749 |
62
+ | 69.1816 | 1.1655 | 1000 | 70.0861 | 0.7700 | 0.7553 | 0.7626 | 0.9771 |
63
+ | 62.5325 | 1.7483 | 1500 | 66.1010 | 0.7697 | 0.7728 | 0.7712 | 0.9774 |
64
+ | 58.8032 | 2.3310 | 2000 | 63.2843 | 0.7722 | 0.7813 | 0.7767 | 0.9781 |
65
+ | 55.8439 | 2.9138 | 2500 | 61.3899 | 0.7711 | 0.7839 | 0.7774 | 0.9777 |
66
+ | 53.6386 | 3.4965 | 3000 | 59.5744 | 0.7829 | 0.7804 | 0.7816 | 0.9782 |
67
+ | 51.8854 | 4.0793 | 3500 | 58.4745 | 0.7896 | 0.7831 | 0.7864 | 0.9784 |
68
+ | 50.3704 | 4.6620 | 4000 | 57.3648 | 0.7888 | 0.7917 | 0.7902 | 0.9787 |
69
+ | 49.2945 | 5.2448 | 4500 | 56.3673 | 0.8003 | 0.7807 | 0.7904 | 0.9787 |
70
+ | 48.3678 | 5.8275 | 5000 | 55.7695 | 0.7906 | 0.7840 | 0.7873 | 0.9787 |
71
+ | 47.4721 | 6.4103 | 5500 | 55.1454 | 0.7836 | 0.7964 | 0.7900 | 0.9792 |
72
+ | 46.9783 | 6.9930 | 6000 | 54.6410 | 0.7931 | 0.7976 | 0.7953 | 0.9790 |
73
+ | 46.3896 | 7.5758 | 6500 | 54.2132 | 0.8004 | 0.7902 | 0.7953 | 0.9792 |
74
+ | 45.895 | 8.1585 | 7000 | 53.9535 | 0.7906 | 0.7945 | 0.7925 | 0.9792 |
75
+ | 45.6796 | 8.7413 | 7500 | 53.7738 | 0.7918 | 0.7895 | 0.7906 | 0.9788 |
76
+ | 45.4159 | 9.3240 | 8000 | 53.6266 | 0.7904 | 0.7950 | 0.7927 | 0.9793 |
77
+ | 45.3274 | 9.9068 | 8500 | 53.5855 | 0.7926 | 0.7941 | 0.7934 | 0.9792 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.44.2
83
+ - Pytorch 2.1.1+cu121
84
+ - Datasets 2.14.5
85
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 6,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.4166666666666667, "recall": 0.6122448979591837, "f1": 0.4958677685950413, "accuracy": 0.9420849420849421}, "en_pud": {"precision": 0.7830637488106565, "recall": 0.7655813953488372, "f1": 0.7742238946378175, "accuracy": 0.9780884019644881}, "de_pud": {"precision": 0.7240740740740741, "recall": 0.7526467757459095, "f1": 0.738084001887683, "accuracy": 0.9709812010688669}, "pt_pud": {"precision": 0.7857142857142857, "recall": 0.7807097361237488, "f1": 0.7832040164308536, "accuracy": 0.9792369803904815}, "ru_pud": {"precision": 0.6836734693877551, "recall": 0.7113899613899614, "f1": 0.6972563859981078, "accuracy": 0.9695169206923275}, "sv_pud": {"precision": 0.8117073170731708, "recall": 0.8085519922254616, "f1": 0.810126582278481, "accuracy": 0.9807087439714824}, "tl_trg": {"precision": 0.7692307692307693, "recall": 0.8695652173913043, "f1": 0.8163265306122449, "accuracy": 0.9863760217983651}, "tl_ugnayan": {"precision": 0.55, "recall": 0.6666666666666666, "f1": 0.6027397260273972, "accuracy": 0.9690063810391978}, "zh_gsd": {"precision": 0.8015364916773368, "recall": 0.8161668839634941, "f1": 0.8087855297157621, "accuracy": 0.9731102231102231}, "zh_gsdsimp": {"precision": 0.8075422626788037, "recall": 0.8138925294888598, "f1": 0.8107049608355091, "accuracy": 0.9722777222777222}, "hr_set": {"precision": 0.8810178817056397, "recall": 0.9130434782608695, "f1": 0.8967448372418622, "accuracy": 0.9874690849134378}, "da_ddt": {"precision": 0.7953488372093023, "recall": 0.7651006711409396, "f1": 0.7799315849486887, "accuracy": 0.9831387808041504}, "en_ewt": {"precision": 0.7700831024930748, "recall": 0.7665441176470589, "f1": 0.7683095347766007, "accuracy": 0.9766505956887277}, "pt_bosque": {"precision": 0.7841918294849023, "recall": 0.7267489711934156, "f1": 0.7543784707390003, "accuracy": 0.9776843935661498}, "sr_set": {"precision": 0.928150765606596, "recall": 0.9303423848878394, "f1": 0.929245283018868, "accuracy": 0.9890552491025304}, "sk_snk": {"precision": 0.6916299559471366, "recall": 0.6863387978142077, "f1": 0.6889742183214482, "accuracy": 0.9603486180904522}, "sv_talbanken": {"precision": 0.8064516129032258, "recall": 0.8928571428571429, "f1": 0.8474576271186439, "accuracy": 0.9971536536290916}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae8e826deff9277c459a92db5798d81583ff667c05c546a7757d445f8accf6d2
3
+ size 939737140
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20fd294096b3102f34e69def2b1951ed45c1f19e8fa7975c10383f9615db9ea6
3
+ size 5304