haryoaw commited on
Commit
1ed3721
1 Parent(s): 4414bc7

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +85 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-kd-po-ner-full-xlmr_data-univner_half66
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-kd-po-ner-full-xlmr_data-univner_half66
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 53.5934
25
+ - Precision: 0.7914
26
+ - Recall: 0.7922
27
+ - F1: 0.7918
28
+ - Accuracy: 0.9789
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 32
50
+ - seed: 66
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 93.9811 | 0.5828 | 500 | 77.1719 | 0.7802 | 0.7262 | 0.7522 | 0.9755 |
62
+ | 69.0206 | 1.1655 | 1000 | 70.2429 | 0.7554 | 0.7718 | 0.7635 | 0.9766 |
63
+ | 62.467 | 1.7483 | 1500 | 66.3316 | 0.7886 | 0.7455 | 0.7664 | 0.9767 |
64
+ | 58.5858 | 2.3310 | 2000 | 63.5450 | 0.7970 | 0.7396 | 0.7672 | 0.9768 |
65
+ | 55.7072 | 2.9138 | 2500 | 61.1857 | 0.7871 | 0.7772 | 0.7821 | 0.9783 |
66
+ | 53.5041 | 3.4965 | 3000 | 59.5353 | 0.7816 | 0.7843 | 0.7829 | 0.9783 |
67
+ | 51.8153 | 4.0793 | 3500 | 58.3157 | 0.7938 | 0.7863 | 0.7900 | 0.9786 |
68
+ | 50.327 | 4.6620 | 4000 | 57.1124 | 0.7914 | 0.7905 | 0.7910 | 0.9788 |
69
+ | 49.2402 | 5.2448 | 4500 | 56.3184 | 0.7844 | 0.7986 | 0.7914 | 0.9789 |
70
+ | 48.2334 | 5.8275 | 5000 | 55.7867 | 0.7922 | 0.7862 | 0.7892 | 0.9787 |
71
+ | 47.4646 | 6.4103 | 5500 | 55.2770 | 0.7955 | 0.7818 | 0.7886 | 0.9785 |
72
+ | 46.8764 | 6.9930 | 6000 | 54.6109 | 0.7958 | 0.7826 | 0.7891 | 0.9788 |
73
+ | 46.3099 | 7.5758 | 6500 | 54.2702 | 0.8051 | 0.7830 | 0.7939 | 0.9792 |
74
+ | 45.8877 | 8.1585 | 7000 | 53.9679 | 0.7953 | 0.7917 | 0.7935 | 0.9792 |
75
+ | 45.5735 | 8.7413 | 7500 | 53.7160 | 0.7935 | 0.7907 | 0.7921 | 0.9787 |
76
+ | 45.3573 | 9.3240 | 8000 | 53.6114 | 0.7886 | 0.7919 | 0.7903 | 0.9791 |
77
+ | 45.2644 | 9.9068 | 8500 | 53.5934 | 0.7914 | 0.7922 | 0.7918 | 0.9789 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.44.2
83
+ - Pytorch 2.1.1+cu121
84
+ - Datasets 2.14.5
85
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 6,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.43283582089552236, "recall": 0.5918367346938775, "f1": 0.5, "accuracy": 0.9505791505791505}, "en_pud": {"precision": 0.7855750487329435, "recall": 0.7497674418604651, "f1": 0.7672536887196573, "accuracy": 0.9778522856063468}, "de_pud": {"precision": 0.736231884057971, "recall": 0.7333974975938402, "f1": 0.734811957569913, "accuracy": 0.9713562420889785}, "pt_pud": {"precision": 0.8007699711260827, "recall": 0.7570518653321201, "f1": 0.7782974742750234, "accuracy": 0.9796642030161917}, "ru_pud": {"precision": 0.6793893129770993, "recall": 0.6872586872586872, "f1": 0.6833013435700576, "accuracy": 0.9680185998450013}, "sv_pud": {"precision": 0.8328298086606244, "recall": 0.8036929057337221, "f1": 0.8180019782393669, "accuracy": 0.9813902285594465}, "tl_trg": {"precision": 0.7777777777777778, "recall": 0.9130434782608695, "f1": 0.84, "accuracy": 0.9877384196185286}, "tl_ugnayan": {"precision": 0.5, "recall": 0.6363636363636364, "f1": 0.56, "accuracy": 0.9644484958979034}, "zh_gsd": {"precision": 0.835820895522388, "recall": 0.803129074315515, "f1": 0.8191489361702127, "accuracy": 0.9751082251082251}, "zh_gsdsimp": {"precision": 0.8128342245989305, "recall": 0.7968545216251638, "f1": 0.8047650562541363, "accuracy": 0.974025974025974}, "hr_set": {"precision": 0.8972554539057002, "recall": 0.9087669280114041, "f1": 0.9029745042492918, "accuracy": 0.9885408079142621}, "da_ddt": {"precision": 0.8188585607940446, "recall": 0.738255033557047, "f1": 0.7764705882352941, "accuracy": 0.9829392397485782}, "en_ewt": {"precision": 0.7942028985507247, "recall": 0.7555147058823529, "f1": 0.7743758831841733, "accuracy": 0.977009204287365}, "pt_bosque": {"precision": 0.7873510540788268, "recall": 0.7069958847736626, "f1": 0.7450130095403296, "accuracy": 0.9764889146500507}, "sr_set": {"precision": 0.9333333333333333, "recall": 0.9256198347107438, "f1": 0.9294605809128631, "accuracy": 0.9887925750809912}, "sk_snk": {"precision": 0.70193401592719, "recall": 0.6743169398907104, "f1": 0.6878483835005574, "accuracy": 0.9597989949748744}, "sv_talbanken": {"precision": 0.8413461538461539, "recall": 0.8928571428571429, "f1": 0.8663366336633663, "accuracy": 0.9973499533788095}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26b899ffd6df4230d5ce526116fb3d2e9f3407241d28822e644bc0129bf12b28
3
+ size 939737140
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01c66de5ee674c97e25239956a9a18f184f0ceee23281d66a8240eaa34cf8474
3
+ size 5304