--- base_model: haryoaw/scenario-TCR-NER_data-univner_half library_name: transformers license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: scenario-kd-po-ner-full-xlmr_data-univner_half66 results: [] --- # scenario-kd-po-ner-full-xlmr_data-univner_half66 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset. It achieves the following results on the evaluation set: - Loss: 53.5934 - Precision: 0.7914 - Recall: 0.7922 - F1: 0.7918 - Accuracy: 0.9789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 66 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 93.9811 | 0.5828 | 500 | 77.1719 | 0.7802 | 0.7262 | 0.7522 | 0.9755 | | 69.0206 | 1.1655 | 1000 | 70.2429 | 0.7554 | 0.7718 | 0.7635 | 0.9766 | | 62.467 | 1.7483 | 1500 | 66.3316 | 0.7886 | 0.7455 | 0.7664 | 0.9767 | | 58.5858 | 2.3310 | 2000 | 63.5450 | 0.7970 | 0.7396 | 0.7672 | 0.9768 | | 55.7072 | 2.9138 | 2500 | 61.1857 | 0.7871 | 0.7772 | 0.7821 | 0.9783 | | 53.5041 | 3.4965 | 3000 | 59.5353 | 0.7816 | 0.7843 | 0.7829 | 0.9783 | | 51.8153 | 4.0793 | 3500 | 58.3157 | 0.7938 | 0.7863 | 0.7900 | 0.9786 | | 50.327 | 4.6620 | 4000 | 57.1124 | 0.7914 | 0.7905 | 0.7910 | 0.9788 | | 49.2402 | 5.2448 | 4500 | 56.3184 | 0.7844 | 0.7986 | 0.7914 | 0.9789 | | 48.2334 | 5.8275 | 5000 | 55.7867 | 0.7922 | 0.7862 | 0.7892 | 0.9787 | | 47.4646 | 6.4103 | 5500 | 55.2770 | 0.7955 | 0.7818 | 0.7886 | 0.9785 | | 46.8764 | 6.9930 | 6000 | 54.6109 | 0.7958 | 0.7826 | 0.7891 | 0.9788 | | 46.3099 | 7.5758 | 6500 | 54.2702 | 0.8051 | 0.7830 | 0.7939 | 0.9792 | | 45.8877 | 8.1585 | 7000 | 53.9679 | 0.7953 | 0.7917 | 0.7935 | 0.9792 | | 45.5735 | 8.7413 | 7500 | 53.7160 | 0.7935 | 0.7907 | 0.7921 | 0.9787 | | 45.3573 | 9.3240 | 8000 | 53.6114 | 0.7886 | 0.7919 | 0.7903 | 0.9791 | | 45.2644 | 9.9068 | 8500 | 53.5934 | 0.7914 | 0.7922 | 0.7918 | 0.9789 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1