--- base_model: haryoaw/scenario-TCR-NER_data-univner_en library_name: transformers license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: scenario-kd-po-ner-full_data-univner_full66 results: [] --- # scenario-kd-po-ner-full_data-univner_full66 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_en](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4704 - Precision: 0.7639 - Recall: 0.7236 - F1: 0.7432 - Accuracy: 0.9788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.9997 | 1.2755 | 500 | 0.7818 | 0.4929 | 0.4286 | 0.4585 | 0.9622 | | 0.4472 | 2.5510 | 1000 | 0.5948 | 0.6438 | 0.6398 | 0.6417 | 0.9734 | | 0.3048 | 3.8265 | 1500 | 0.5434 | 0.7053 | 0.6936 | 0.6994 | 0.9768 | | 0.2301 | 5.1020 | 2000 | 0.5331 | 0.7080 | 0.7205 | 0.7142 | 0.9768 | | 0.19 | 6.3776 | 2500 | 0.5176 | 0.7118 | 0.7236 | 0.7177 | 0.9766 | | 0.1622 | 7.6531 | 3000 | 0.5157 | 0.7330 | 0.7050 | 0.7187 | 0.9778 | | 0.1461 | 8.9286 | 3500 | 0.5090 | 0.7553 | 0.6967 | 0.7248 | 0.9775 | | 0.1331 | 10.2041 | 4000 | 0.4857 | 0.7558 | 0.7081 | 0.7312 | 0.9781 | | 0.123 | 11.4796 | 4500 | 0.5082 | 0.7566 | 0.7081 | 0.7316 | 0.9784 | | 0.1134 | 12.7551 | 5000 | 0.5113 | 0.7440 | 0.7008 | 0.7217 | 0.9775 | | 0.109 | 14.0306 | 5500 | 0.5122 | 0.7559 | 0.6925 | 0.7229 | 0.9773 | | 0.1045 | 15.3061 | 6000 | 0.4942 | 0.7362 | 0.7164 | 0.7261 | 0.9779 | | 0.1005 | 16.5816 | 6500 | 0.4817 | 0.7770 | 0.7143 | 0.7443 | 0.9794 | | 0.0967 | 17.8571 | 7000 | 0.4947 | 0.7642 | 0.7081 | 0.7351 | 0.9782 | | 0.094 | 19.1327 | 7500 | 0.4737 | 0.7527 | 0.7215 | 0.7368 | 0.9785 | | 0.0917 | 20.4082 | 8000 | 0.4815 | 0.7669 | 0.7153 | 0.7402 | 0.9786 | | 0.0889 | 21.6837 | 8500 | 0.4797 | 0.7783 | 0.7195 | 0.7477 | 0.9791 | | 0.0885 | 22.9592 | 9000 | 0.4824 | 0.7584 | 0.7215 | 0.7395 | 0.9783 | | 0.0866 | 24.2347 | 9500 | 0.4557 | 0.7630 | 0.7164 | 0.7389 | 0.9794 | | 0.0855 | 25.5102 | 10000 | 0.4618 | 0.7749 | 0.7236 | 0.7484 | 0.9797 | | 0.0851 | 26.7857 | 10500 | 0.4466 | 0.7641 | 0.7443 | 0.7541 | 0.9800 | | 0.0837 | 28.0612 | 11000 | 0.4526 | 0.7725 | 0.7381 | 0.7549 | 0.9795 | | 0.0834 | 29.3367 | 11500 | 0.4704 | 0.7639 | 0.7236 | 0.7432 | 0.9788 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1