--- license: mit base_model: haryoaw/scenario-TCR-NER_data-univner_full tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scenario-kd-po-ner-half-xlmr_data-univner_full66 results: [] --- # scenario-kd-po-ner-half-xlmr_data-univner_full66 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset. It achieves the following results on the evaluation set: - Loss: 119.1294 - Precision: 0.4508 - Recall: 0.4147 - F1: 0.4320 - Accuracy: 0.9488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 66 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 284.146 | 0.29 | 500 | 212.3445 | 0.0 | 0.0 | 0.0 | 0.9241 | | 195.0927 | 0.58 | 1000 | 183.6382 | 0.1678 | 0.0104 | 0.0196 | 0.9248 | | 175.6188 | 0.87 | 1500 | 169.2953 | 0.2481 | 0.0462 | 0.0778 | 0.9266 | | 164.5343 | 1.16 | 2000 | 160.0481 | 0.25 | 0.0763 | 0.1169 | 0.9295 | | 155.7977 | 1.46 | 2500 | 153.3116 | 0.2572 | 0.1597 | 0.1971 | 0.9334 | | 150.8056 | 1.75 | 3000 | 147.9380 | 0.2919 | 0.1860 | 0.2272 | 0.9354 | | 145.886 | 2.04 | 3500 | 144.0042 | 0.3123 | 0.2203 | 0.2584 | 0.9363 | | 141.6606 | 2.33 | 4000 | 140.6623 | 0.3362 | 0.2148 | 0.2621 | 0.9378 | | 138.9315 | 2.62 | 4500 | 137.7953 | 0.3395 | 0.2557 | 0.2917 | 0.9390 | | 136.3904 | 2.91 | 5000 | 135.3107 | 0.3432 | 0.2940 | 0.3167 | 0.9407 | | 133.4631 | 3.2 | 5500 | 133.3555 | 0.3602 | 0.3239 | 0.3411 | 0.9419 | | 131.8994 | 3.49 | 6000 | 131.5568 | 0.3743 | 0.3372 | 0.3548 | 0.9421 | | 130.0259 | 3.78 | 6500 | 130.1601 | 0.3590 | 0.3480 | 0.3534 | 0.9425 | | 128.8084 | 4.08 | 7000 | 128.5461 | 0.3878 | 0.3197 | 0.3505 | 0.9431 | | 126.9491 | 4.37 | 7500 | 127.3171 | 0.4126 | 0.3611 | 0.3852 | 0.9444 | | 125.7889 | 4.66 | 8000 | 126.2976 | 0.3964 | 0.3598 | 0.3773 | 0.9449 | | 125.1757 | 4.95 | 8500 | 125.3498 | 0.3985 | 0.3718 | 0.3847 | 0.9448 | | 124.1594 | 5.24 | 9000 | 124.6697 | 0.4158 | 0.3617 | 0.3869 | 0.9457 | | 122.9069 | 5.53 | 9500 | 123.8015 | 0.4246 | 0.3735 | 0.3975 | 0.9457 | | 121.9428 | 5.82 | 10000 | 123.1179 | 0.4038 | 0.3846 | 0.3940 | 0.9461 | | 121.4957 | 6.11 | 10500 | 122.5535 | 0.4256 | 0.3835 | 0.4035 | 0.9468 | | 120.8021 | 6.4 | 11000 | 121.9703 | 0.4315 | 0.3887 | 0.4090 | 0.9467 | | 120.6592 | 6.69 | 11500 | 121.5849 | 0.4290 | 0.4178 | 0.4233 | 0.9478 | | 119.7714 | 6.99 | 12000 | 121.0852 | 0.4380 | 0.4115 | 0.4243 | 0.9479 | | 119.6204 | 7.28 | 12500 | 120.7726 | 0.4477 | 0.3894 | 0.4165 | 0.9478 | | 118.8015 | 7.57 | 13000 | 120.4320 | 0.4449 | 0.4093 | 0.4264 | 0.9480 | | 118.8596 | 7.86 | 13500 | 120.1600 | 0.4454 | 0.4053 | 0.4244 | 0.9481 | | 118.376 | 8.15 | 14000 | 119.9419 | 0.4406 | 0.4047 | 0.4219 | 0.9484 | | 118.1562 | 8.44 | 14500 | 119.6902 | 0.4427 | 0.4099 | 0.4257 | 0.9483 | | 117.8396 | 8.73 | 15000 | 119.5728 | 0.4410 | 0.4155 | 0.4279 | 0.9484 | | 117.496 | 9.02 | 15500 | 119.4226 | 0.4450 | 0.4188 | 0.4315 | 0.9486 | | 117.5852 | 9.31 | 16000 | 119.3681 | 0.4498 | 0.4096 | 0.4288 | 0.9486 | | 117.6006 | 9.61 | 16500 | 119.2253 | 0.4467 | 0.4048 | 0.4247 | 0.9487 | | 117.3602 | 9.9 | 17000 | 119.1294 | 0.4508 | 0.4147 | 0.4320 | 0.9488 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3