Initial Commit
Browse files- README.md +102 -0
- config.json +46 -0
- eval_result_ner.json +1 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: FacebookAI/xlm-roberta-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: scenario-kd-pre-ner-full-xlmr_data-univner_full44
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# scenario-kd-pre-ner-full-xlmr_data-univner_full44
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.4609
|
25 |
+
- Precision: 0.8151
|
26 |
+
- Recall: 0.8199
|
27 |
+
- F1: 0.8175
|
28 |
+
- Accuracy: 0.9812
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 8
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 44
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 32
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 10
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
60 |
+
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
61 |
+
| 1.4889 | 0.2911 | 500 | 0.8586 | 0.6595 | 0.7179 | 0.6875 | 0.9708 |
|
62 |
+
| 0.756 | 0.5822 | 1000 | 0.7200 | 0.7071 | 0.7746 | 0.7393 | 0.9739 |
|
63 |
+
| 0.6626 | 0.8732 | 1500 | 0.6671 | 0.7417 | 0.7530 | 0.7473 | 0.9760 |
|
64 |
+
| 0.5626 | 1.1643 | 2000 | 0.6205 | 0.7676 | 0.7785 | 0.7730 | 0.9772 |
|
65 |
+
| 0.514 | 1.4554 | 2500 | 0.6545 | 0.8094 | 0.7420 | 0.7743 | 0.9774 |
|
66 |
+
| 0.4905 | 1.7465 | 3000 | 0.5754 | 0.7770 | 0.7869 | 0.7819 | 0.9782 |
|
67 |
+
| 0.461 | 2.0375 | 3500 | 0.5559 | 0.7697 | 0.8101 | 0.7894 | 0.9790 |
|
68 |
+
| 0.4097 | 2.3286 | 4000 | 0.5613 | 0.7862 | 0.7836 | 0.7849 | 0.9785 |
|
69 |
+
| 0.3973 | 2.6197 | 4500 | 0.5514 | 0.7850 | 0.8003 | 0.7926 | 0.9795 |
|
70 |
+
| 0.3878 | 2.9108 | 5000 | 0.5299 | 0.7913 | 0.8039 | 0.7975 | 0.9791 |
|
71 |
+
| 0.3579 | 3.2019 | 5500 | 0.5424 | 0.8023 | 0.7852 | 0.7936 | 0.9790 |
|
72 |
+
| 0.3434 | 3.4929 | 6000 | 0.5077 | 0.7881 | 0.8085 | 0.7982 | 0.9795 |
|
73 |
+
| 0.3362 | 3.7840 | 6500 | 0.5244 | 0.8012 | 0.7943 | 0.7977 | 0.9793 |
|
74 |
+
| 0.3243 | 4.0751 | 7000 | 0.5158 | 0.8068 | 0.8108 | 0.8088 | 0.9801 |
|
75 |
+
| 0.3134 | 4.3662 | 7500 | 0.5081 | 0.8001 | 0.8137 | 0.8069 | 0.9799 |
|
76 |
+
| 0.3027 | 4.6573 | 8000 | 0.4989 | 0.8003 | 0.8169 | 0.8085 | 0.9803 |
|
77 |
+
| 0.2977 | 4.9483 | 8500 | 0.4926 | 0.8013 | 0.8121 | 0.8067 | 0.9804 |
|
78 |
+
| 0.2822 | 5.2394 | 9000 | 0.4905 | 0.8052 | 0.8081 | 0.8067 | 0.9801 |
|
79 |
+
| 0.2773 | 5.5305 | 9500 | 0.4864 | 0.8012 | 0.8049 | 0.8031 | 0.9798 |
|
80 |
+
| 0.2803 | 5.8216 | 10000 | 0.4883 | 0.7963 | 0.8090 | 0.8026 | 0.9798 |
|
81 |
+
| 0.2717 | 6.1126 | 10500 | 0.4941 | 0.8169 | 0.7909 | 0.8037 | 0.9798 |
|
82 |
+
| 0.258 | 6.4037 | 11000 | 0.4842 | 0.8008 | 0.8078 | 0.8043 | 0.9802 |
|
83 |
+
| 0.2572 | 6.6948 | 11500 | 0.4760 | 0.8129 | 0.8097 | 0.8113 | 0.9805 |
|
84 |
+
| 0.2553 | 6.9859 | 12000 | 0.4742 | 0.8119 | 0.8116 | 0.8117 | 0.9809 |
|
85 |
+
| 0.2462 | 7.2770 | 12500 | 0.4791 | 0.8116 | 0.8054 | 0.8085 | 0.9806 |
|
86 |
+
| 0.2447 | 7.5680 | 13000 | 0.4750 | 0.8017 | 0.8171 | 0.8093 | 0.9804 |
|
87 |
+
| 0.2463 | 7.8591 | 13500 | 0.4657 | 0.8179 | 0.8113 | 0.8146 | 0.9811 |
|
88 |
+
| 0.2381 | 8.1502 | 14000 | 0.4677 | 0.8025 | 0.8153 | 0.8088 | 0.9805 |
|
89 |
+
| 0.2357 | 8.4413 | 14500 | 0.4658 | 0.8135 | 0.8184 | 0.8159 | 0.9810 |
|
90 |
+
| 0.2333 | 8.7324 | 15000 | 0.4638 | 0.8144 | 0.8116 | 0.8130 | 0.9807 |
|
91 |
+
| 0.234 | 9.0234 | 15500 | 0.4605 | 0.8126 | 0.8165 | 0.8145 | 0.9810 |
|
92 |
+
| 0.2297 | 9.3145 | 16000 | 0.4670 | 0.8116 | 0.8080 | 0.8098 | 0.9808 |
|
93 |
+
| 0.2258 | 9.6056 | 16500 | 0.4651 | 0.8095 | 0.8142 | 0.8118 | 0.9808 |
|
94 |
+
| 0.2272 | 9.8967 | 17000 | 0.4609 | 0.8151 | 0.8199 | 0.8175 | 0.9812 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.44.2
|
100 |
+
- Pytorch 2.1.1+cu121
|
101 |
+
- Datasets 2.14.5
|
102 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "FacebookAI/xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForTokenClassificationKD"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4",
|
19 |
+
"5": "LABEL_5",
|
20 |
+
"6": "LABEL_6"
|
21 |
+
},
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"intermediate_size": 3072,
|
24 |
+
"label2id": {
|
25 |
+
"LABEL_0": 0,
|
26 |
+
"LABEL_1": 1,
|
27 |
+
"LABEL_2": 2,
|
28 |
+
"LABEL_3": 3,
|
29 |
+
"LABEL_4": 4,
|
30 |
+
"LABEL_5": 5,
|
31 |
+
"LABEL_6": 6
|
32 |
+
},
|
33 |
+
"layer_norm_eps": 1e-05,
|
34 |
+
"max_position_embeddings": 514,
|
35 |
+
"model_type": "xlm-roberta",
|
36 |
+
"num_attention_heads": 12,
|
37 |
+
"num_hidden_layers": 6,
|
38 |
+
"output_past": true,
|
39 |
+
"pad_token_id": 1,
|
40 |
+
"position_embedding_type": "absolute",
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.44.2",
|
43 |
+
"type_vocab_size": 1,
|
44 |
+
"use_cache": true,
|
45 |
+
"vocab_size": 250002
|
46 |
+
}
|
eval_result_ner.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ceb_gja": {"precision": 0.5753424657534246, "recall": 0.8571428571428571, "f1": 0.6885245901639344, "accuracy": 0.9698841698841699}, "en_pud": {"precision": 0.7919921875, "recall": 0.7544186046511628, "f1": 0.7727489280609815, "accuracy": 0.978796751038912}, "de_pud": {"precision": 0.7275280898876404, "recall": 0.7478344562078922, "f1": 0.7375415282392026, "accuracy": 0.9727626459143969}, "pt_pud": {"precision": 0.8328888888888889, "recall": 0.8525932666060054, "f1": 0.8426258992805756, "accuracy": 0.9847054299995728}, "ru_pud": {"precision": 0.690566037735849, "recall": 0.7065637065637066, "f1": 0.6984732824427481, "accuracy": 0.9701369155257039}, "sv_pud": {"precision": 0.825098814229249, "recall": 0.8114674441205053, "f1": 0.8182263596276335, "accuracy": 0.982543510169847}, "tl_trg": {"precision": 0.8333333333333334, "recall": 0.8695652173913043, "f1": 0.851063829787234, "accuracy": 0.9904632152588556}, "tl_ugnayan": {"precision": 0.5384615384615384, "recall": 0.6363636363636364, "f1": 0.5833333333333334, "accuracy": 0.9690063810391978}, "zh_gsd": {"precision": 0.817470664928292, "recall": 0.817470664928292, "f1": 0.817470664928292, "accuracy": 0.974025974025974}, "zh_gsdsimp": {"precision": 0.8111979166666666, "recall": 0.8165137614678899, "f1": 0.813847158719791, "accuracy": 0.9731934731934732}, "hr_set": {"precision": 0.8870175438596491, "recall": 0.9009265858873842, "f1": 0.8939179632248939, "accuracy": 0.9877164056059357}, "da_ddt": {"precision": 0.8551068883610451, "recall": 0.8053691275167785, "f1": 0.8294930875576036, "accuracy": 0.986930060860022}, "en_ewt": {"precision": 0.804496578690127, "recall": 0.7564338235294118, "f1": 0.7797252486972998, "accuracy": 0.977208431286608}, "pt_bosque": {"precision": 0.8516075845012366, "recall": 0.8502057613168724, "f1": 0.8509060955518946, "accuracy": 0.9855455731053471}, "sr_set": {"precision": 0.9245283018867925, "recall": 0.9256198347107438, "f1": 0.9250737463126844, "accuracy": 0.9887925750809912}, "sk_snk": {"precision": 0.7808988764044944, "recall": 0.7595628415300546, "f1": 0.7700831024930748, "accuracy": 0.9675722361809045}, "sv_talbanken": {"precision": 0.8373205741626795, "recall": 0.8928571428571429, "f1": 0.8641975308641975, "accuracy": 0.9973499533788095}}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb64c95ab13a3d6837c6de18b923af1a6ed5b17e135ab21201530144ae1ed86a
|
3 |
+
size 939737140
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69ba0bd6adceb24c9016266111c6dcaac0a079963fbad3a30ba6b39f03fda516
|
3 |
+
size 5304
|