--- base_model: FacebookAI/xlm-roberta-base library_name: transformers license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: scenario-kd-pre-ner-full-xlmr_data-univner_full44 results: [] --- # scenario-kd-pre-ner-full-xlmr_data-univner_full44 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4609 - Precision: 0.8151 - Recall: 0.8199 - F1: 0.8175 - Accuracy: 0.9812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 44 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.4889 | 0.2911 | 500 | 0.8586 | 0.6595 | 0.7179 | 0.6875 | 0.9708 | | 0.756 | 0.5822 | 1000 | 0.7200 | 0.7071 | 0.7746 | 0.7393 | 0.9739 | | 0.6626 | 0.8732 | 1500 | 0.6671 | 0.7417 | 0.7530 | 0.7473 | 0.9760 | | 0.5626 | 1.1643 | 2000 | 0.6205 | 0.7676 | 0.7785 | 0.7730 | 0.9772 | | 0.514 | 1.4554 | 2500 | 0.6545 | 0.8094 | 0.7420 | 0.7743 | 0.9774 | | 0.4905 | 1.7465 | 3000 | 0.5754 | 0.7770 | 0.7869 | 0.7819 | 0.9782 | | 0.461 | 2.0375 | 3500 | 0.5559 | 0.7697 | 0.8101 | 0.7894 | 0.9790 | | 0.4097 | 2.3286 | 4000 | 0.5613 | 0.7862 | 0.7836 | 0.7849 | 0.9785 | | 0.3973 | 2.6197 | 4500 | 0.5514 | 0.7850 | 0.8003 | 0.7926 | 0.9795 | | 0.3878 | 2.9108 | 5000 | 0.5299 | 0.7913 | 0.8039 | 0.7975 | 0.9791 | | 0.3579 | 3.2019 | 5500 | 0.5424 | 0.8023 | 0.7852 | 0.7936 | 0.9790 | | 0.3434 | 3.4929 | 6000 | 0.5077 | 0.7881 | 0.8085 | 0.7982 | 0.9795 | | 0.3362 | 3.7840 | 6500 | 0.5244 | 0.8012 | 0.7943 | 0.7977 | 0.9793 | | 0.3243 | 4.0751 | 7000 | 0.5158 | 0.8068 | 0.8108 | 0.8088 | 0.9801 | | 0.3134 | 4.3662 | 7500 | 0.5081 | 0.8001 | 0.8137 | 0.8069 | 0.9799 | | 0.3027 | 4.6573 | 8000 | 0.4989 | 0.8003 | 0.8169 | 0.8085 | 0.9803 | | 0.2977 | 4.9483 | 8500 | 0.4926 | 0.8013 | 0.8121 | 0.8067 | 0.9804 | | 0.2822 | 5.2394 | 9000 | 0.4905 | 0.8052 | 0.8081 | 0.8067 | 0.9801 | | 0.2773 | 5.5305 | 9500 | 0.4864 | 0.8012 | 0.8049 | 0.8031 | 0.9798 | | 0.2803 | 5.8216 | 10000 | 0.4883 | 0.7963 | 0.8090 | 0.8026 | 0.9798 | | 0.2717 | 6.1126 | 10500 | 0.4941 | 0.8169 | 0.7909 | 0.8037 | 0.9798 | | 0.258 | 6.4037 | 11000 | 0.4842 | 0.8008 | 0.8078 | 0.8043 | 0.9802 | | 0.2572 | 6.6948 | 11500 | 0.4760 | 0.8129 | 0.8097 | 0.8113 | 0.9805 | | 0.2553 | 6.9859 | 12000 | 0.4742 | 0.8119 | 0.8116 | 0.8117 | 0.9809 | | 0.2462 | 7.2770 | 12500 | 0.4791 | 0.8116 | 0.8054 | 0.8085 | 0.9806 | | 0.2447 | 7.5680 | 13000 | 0.4750 | 0.8017 | 0.8171 | 0.8093 | 0.9804 | | 0.2463 | 7.8591 | 13500 | 0.4657 | 0.8179 | 0.8113 | 0.8146 | 0.9811 | | 0.2381 | 8.1502 | 14000 | 0.4677 | 0.8025 | 0.8153 | 0.8088 | 0.9805 | | 0.2357 | 8.4413 | 14500 | 0.4658 | 0.8135 | 0.8184 | 0.8159 | 0.9810 | | 0.2333 | 8.7324 | 15000 | 0.4638 | 0.8144 | 0.8116 | 0.8130 | 0.9807 | | 0.234 | 9.0234 | 15500 | 0.4605 | 0.8126 | 0.8165 | 0.8145 | 0.9810 | | 0.2297 | 9.3145 | 16000 | 0.4670 | 0.8116 | 0.8080 | 0.8098 | 0.9808 | | 0.2258 | 9.6056 | 16500 | 0.4651 | 0.8095 | 0.8142 | 0.8118 | 0.9808 | | 0.2272 | 9.8967 | 17000 | 0.4609 | 0.8151 | 0.8199 | 0.8175 | 0.9812 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1