Initial Commit
Browse files- README.md +102 -0
- config.json +46 -0
- eval_result_ner.json +1 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: FacebookAI/xlm-roberta-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: scenario-kd-pre-ner-full-xlmr_data-univner_full55
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# scenario-kd-pre-ner-full-xlmr_data-univner_full55
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.4608
|
25 |
+
- Precision: 0.8156
|
26 |
+
- Recall: 0.8175
|
27 |
+
- F1: 0.8165
|
28 |
+
- Accuracy: 0.9809
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 8
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 55
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 32
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 10
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
60 |
+
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
61 |
+
| 1.4819 | 0.2911 | 500 | 0.9261 | 0.6821 | 0.6631 | 0.6725 | 0.9684 |
|
62 |
+
| 0.7602 | 0.5822 | 1000 | 0.7517 | 0.7360 | 0.7280 | 0.7320 | 0.9744 |
|
63 |
+
| 0.6658 | 0.8732 | 1500 | 0.6692 | 0.7309 | 0.7741 | 0.7519 | 0.9759 |
|
64 |
+
| 0.5797 | 1.1643 | 2000 | 0.6374 | 0.7530 | 0.7754 | 0.7640 | 0.9771 |
|
65 |
+
| 0.5073 | 1.4554 | 2500 | 0.6143 | 0.7486 | 0.7814 | 0.7646 | 0.9768 |
|
66 |
+
| 0.4981 | 1.7465 | 3000 | 0.5840 | 0.7764 | 0.7886 | 0.7825 | 0.9782 |
|
67 |
+
| 0.4623 | 2.0375 | 3500 | 0.5865 | 0.7928 | 0.7762 | 0.7844 | 0.9785 |
|
68 |
+
| 0.4163 | 2.3286 | 4000 | 0.5635 | 0.7767 | 0.7969 | 0.7866 | 0.9786 |
|
69 |
+
| 0.3968 | 2.6197 | 4500 | 0.5500 | 0.7826 | 0.7844 | 0.7835 | 0.9782 |
|
70 |
+
| 0.3882 | 2.9108 | 5000 | 0.5628 | 0.7999 | 0.7878 | 0.7938 | 0.9792 |
|
71 |
+
| 0.3671 | 3.2019 | 5500 | 0.5415 | 0.7851 | 0.8002 | 0.7926 | 0.9790 |
|
72 |
+
| 0.3478 | 3.4929 | 6000 | 0.5258 | 0.7988 | 0.8015 | 0.8001 | 0.9800 |
|
73 |
+
| 0.3402 | 3.7840 | 6500 | 0.5184 | 0.7948 | 0.8113 | 0.8029 | 0.9801 |
|
74 |
+
| 0.3272 | 4.0751 | 7000 | 0.5122 | 0.7873 | 0.8145 | 0.8007 | 0.9796 |
|
75 |
+
| 0.3138 | 4.3662 | 7500 | 0.5116 | 0.7927 | 0.7995 | 0.7961 | 0.9796 |
|
76 |
+
| 0.3078 | 4.6573 | 8000 | 0.5158 | 0.8017 | 0.7970 | 0.7994 | 0.9793 |
|
77 |
+
| 0.3041 | 4.9483 | 8500 | 0.4921 | 0.7932 | 0.8155 | 0.8042 | 0.9799 |
|
78 |
+
| 0.2874 | 5.2394 | 9000 | 0.5006 | 0.7984 | 0.8055 | 0.8019 | 0.9799 |
|
79 |
+
| 0.2805 | 5.5305 | 9500 | 0.4859 | 0.8075 | 0.8091 | 0.8083 | 0.9802 |
|
80 |
+
| 0.2803 | 5.8216 | 10000 | 0.4845 | 0.8046 | 0.8123 | 0.8084 | 0.9809 |
|
81 |
+
| 0.2738 | 6.1126 | 10500 | 0.4837 | 0.8033 | 0.8117 | 0.8075 | 0.9805 |
|
82 |
+
| 0.2618 | 6.4037 | 11000 | 0.4872 | 0.8089 | 0.8108 | 0.8099 | 0.9809 |
|
83 |
+
| 0.2625 | 6.6948 | 11500 | 0.4765 | 0.8049 | 0.8075 | 0.8062 | 0.9803 |
|
84 |
+
| 0.2588 | 6.9859 | 12000 | 0.4760 | 0.8104 | 0.8155 | 0.8129 | 0.9810 |
|
85 |
+
| 0.2471 | 7.2770 | 12500 | 0.4727 | 0.8030 | 0.8146 | 0.8088 | 0.9807 |
|
86 |
+
| 0.2448 | 7.5680 | 13000 | 0.4599 | 0.7999 | 0.8207 | 0.8101 | 0.9808 |
|
87 |
+
| 0.2448 | 7.8591 | 13500 | 0.4828 | 0.8114 | 0.8059 | 0.8087 | 0.9803 |
|
88 |
+
| 0.2422 | 8.1502 | 14000 | 0.4690 | 0.8170 | 0.8090 | 0.8130 | 0.9809 |
|
89 |
+
| 0.2368 | 8.4413 | 14500 | 0.4695 | 0.8105 | 0.8145 | 0.8125 | 0.9810 |
|
90 |
+
| 0.2356 | 8.7324 | 15000 | 0.4659 | 0.8076 | 0.8121 | 0.8099 | 0.9806 |
|
91 |
+
| 0.2312 | 9.0234 | 15500 | 0.4677 | 0.8194 | 0.8124 | 0.8159 | 0.9810 |
|
92 |
+
| 0.2333 | 9.3145 | 16000 | 0.4627 | 0.8115 | 0.8153 | 0.8134 | 0.9810 |
|
93 |
+
| 0.2279 | 9.6056 | 16500 | 0.4672 | 0.8111 | 0.8146 | 0.8128 | 0.9807 |
|
94 |
+
| 0.2299 | 9.8967 | 17000 | 0.4608 | 0.8156 | 0.8175 | 0.8165 | 0.9809 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.44.2
|
100 |
+
- Pytorch 2.1.1+cu121
|
101 |
+
- Datasets 2.14.5
|
102 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "FacebookAI/xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForTokenClassificationKD"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4",
|
19 |
+
"5": "LABEL_5",
|
20 |
+
"6": "LABEL_6"
|
21 |
+
},
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"intermediate_size": 3072,
|
24 |
+
"label2id": {
|
25 |
+
"LABEL_0": 0,
|
26 |
+
"LABEL_1": 1,
|
27 |
+
"LABEL_2": 2,
|
28 |
+
"LABEL_3": 3,
|
29 |
+
"LABEL_4": 4,
|
30 |
+
"LABEL_5": 5,
|
31 |
+
"LABEL_6": 6
|
32 |
+
},
|
33 |
+
"layer_norm_eps": 1e-05,
|
34 |
+
"max_position_embeddings": 514,
|
35 |
+
"model_type": "xlm-roberta",
|
36 |
+
"num_attention_heads": 12,
|
37 |
+
"num_hidden_layers": 6,
|
38 |
+
"output_past": true,
|
39 |
+
"pad_token_id": 1,
|
40 |
+
"position_embedding_type": "absolute",
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.44.2",
|
43 |
+
"type_vocab_size": 1,
|
44 |
+
"use_cache": true,
|
45 |
+
"vocab_size": 250002
|
46 |
+
}
|
eval_result_ner.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ceb_gja": {"precision": 0.5373134328358209, "recall": 0.7346938775510204, "f1": 0.6206896551724138, "accuracy": 0.9652509652509652}, "en_pud": {"precision": 0.7833173537871524, "recall": 0.76, "f1": 0.7714825306893295, "accuracy": 0.9784661881375142}, "de_pud": {"precision": 0.7214285714285714, "recall": 0.7776708373435997, "f1": 0.7484946734599351, "accuracy": 0.9728564061694248}, "pt_pud": {"precision": 0.8086580086580086, "recall": 0.8498635122838945, "f1": 0.828748890860692, "accuracy": 0.9841927628487205}, "ru_pud": {"precision": 0.6859273066169618, "recall": 0.7104247104247104, "f1": 0.6979611190137506, "accuracy": 0.9695169206923275}, "sv_pud": {"precision": 0.8308457711442786, "recall": 0.8114674441205053, "f1": 0.8210422812192724, "accuracy": 0.9827531977353743}, "tl_trg": {"precision": 0.8181818181818182, "recall": 0.782608695652174, "f1": 0.8, "accuracy": 0.9918256130790191}, "tl_ugnayan": {"precision": 0.5365853658536586, "recall": 0.6666666666666666, "f1": 0.5945945945945946, "accuracy": 0.9699179580674567}, "zh_gsd": {"precision": 0.8273092369477911, "recall": 0.8057366362451108, "f1": 0.8163804491413473, "accuracy": 0.9744422244422244}, "zh_gsdsimp": {"precision": 0.8223684210526315, "recall": 0.8191349934469201, "f1": 0.8207485226526592, "accuracy": 0.9756077256077256}, "hr_set": {"precision": 0.8713892709766162, "recall": 0.9030648610121169, "f1": 0.8869443472173609, "accuracy": 0.986479802143446}, "da_ddt": {"precision": 0.8414918414918415, "recall": 0.8076062639821029, "f1": 0.8242009132420092, "accuracy": 0.9871296019155942}, "en_ewt": {"precision": 0.789980732177264, "recall": 0.7536764705882353, "f1": 0.7714016933207902, "accuracy": 0.9767701318882736}, "pt_bosque": {"precision": 0.8534979423868313, "recall": 0.8534979423868313, "f1": 0.8534979423868313, "accuracy": 0.9857629329082742}, "sr_set": {"precision": 0.9453032104637337, "recall": 0.9386068476977568, "f1": 0.9419431279620853, "accuracy": 0.9908064092461255}, "sk_snk": {"precision": 0.7670454545454546, "recall": 0.7377049180327869, "f1": 0.7520891364902507, "accuracy": 0.9667870603015075}, "sv_talbanken": {"precision": 0.8333333333333334, "recall": 0.8928571428571429, "f1": 0.8620689655172413, "accuracy": 0.997399028316239}}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fce52ce4c7b88a603fbf187d138595734d7a6301ec7807919f0b1bcd7bd86195
|
3 |
+
size 939737140
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d81250219924281e3b13cddb2b2191dc68ee6a78292c4e59f1a3c855f83a41f
|
3 |
+
size 5304
|