haryoaw commited on
Commit
b4b5c34
1 Parent(s): b95e598

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +102 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: FacebookAI/xlm-roberta-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-kd-pre-ner-full-xlmr_data-univner_full66
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-kd-pre-ner-full-xlmr_data-univner_full66
21
+
22
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.4655
25
+ - Precision: 0.8114
26
+ - Recall: 0.8137
27
+ - F1: 0.8126
28
+ - Accuracy: 0.9807
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 32
50
+ - seed: 66
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 1.497 | 0.2911 | 500 | 0.9072 | 0.6658 | 0.6611 | 0.6634 | 0.9685 |
62
+ | 0.7828 | 0.5822 | 1000 | 0.7395 | 0.7001 | 0.7482 | 0.7233 | 0.9729 |
63
+ | 0.6597 | 0.8732 | 1500 | 0.6711 | 0.7843 | 0.7178 | 0.7496 | 0.9753 |
64
+ | 0.573 | 1.1643 | 2000 | 0.6213 | 0.7522 | 0.7820 | 0.7668 | 0.9773 |
65
+ | 0.5148 | 1.4554 | 2500 | 0.6290 | 0.7325 | 0.7919 | 0.7610 | 0.9759 |
66
+ | 0.497 | 1.7465 | 3000 | 0.5801 | 0.7759 | 0.7780 | 0.7769 | 0.9778 |
67
+ | 0.4659 | 2.0375 | 3500 | 0.5765 | 0.7926 | 0.7764 | 0.7844 | 0.9786 |
68
+ | 0.4098 | 2.3286 | 4000 | 0.5585 | 0.7868 | 0.7853 | 0.7860 | 0.9789 |
69
+ | 0.4085 | 2.6197 | 4500 | 0.5536 | 0.7862 | 0.8042 | 0.7951 | 0.9793 |
70
+ | 0.3979 | 2.9108 | 5000 | 0.5326 | 0.7902 | 0.8077 | 0.7989 | 0.9798 |
71
+ | 0.3568 | 3.2019 | 5500 | 0.5366 | 0.7925 | 0.7922 | 0.7924 | 0.9793 |
72
+ | 0.3523 | 3.4929 | 6000 | 0.5277 | 0.8058 | 0.7870 | 0.7963 | 0.9792 |
73
+ | 0.3361 | 3.7840 | 6500 | 0.5239 | 0.7851 | 0.8159 | 0.8002 | 0.9792 |
74
+ | 0.3298 | 4.0751 | 7000 | 0.5126 | 0.7993 | 0.8074 | 0.8033 | 0.9800 |
75
+ | 0.3053 | 4.3662 | 7500 | 0.5124 | 0.8074 | 0.7961 | 0.8017 | 0.9796 |
76
+ | 0.3099 | 4.6573 | 8000 | 0.5019 | 0.7953 | 0.8145 | 0.8048 | 0.9799 |
77
+ | 0.3031 | 4.9483 | 8500 | 0.4978 | 0.8133 | 0.8009 | 0.8071 | 0.9801 |
78
+ | 0.2834 | 5.2394 | 9000 | 0.5067 | 0.8160 | 0.8044 | 0.8101 | 0.9804 |
79
+ | 0.2767 | 5.5305 | 9500 | 0.4905 | 0.8104 | 0.8096 | 0.8100 | 0.9804 |
80
+ | 0.2799 | 5.8216 | 10000 | 0.4812 | 0.8092 | 0.8058 | 0.8075 | 0.9804 |
81
+ | 0.2735 | 6.1126 | 10500 | 0.4849 | 0.8110 | 0.8104 | 0.8107 | 0.9805 |
82
+ | 0.261 | 6.4037 | 11000 | 0.4817 | 0.8100 | 0.8114 | 0.8107 | 0.9803 |
83
+ | 0.2587 | 6.6948 | 11500 | 0.4814 | 0.8127 | 0.8152 | 0.8139 | 0.9810 |
84
+ | 0.2593 | 6.9859 | 12000 | 0.4812 | 0.8171 | 0.8090 | 0.8130 | 0.9806 |
85
+ | 0.247 | 7.2770 | 12500 | 0.4816 | 0.8037 | 0.8173 | 0.8104 | 0.9807 |
86
+ | 0.2452 | 7.5680 | 13000 | 0.4688 | 0.8130 | 0.8117 | 0.8124 | 0.9805 |
87
+ | 0.2426 | 7.8591 | 13500 | 0.4700 | 0.8130 | 0.8104 | 0.8117 | 0.9806 |
88
+ | 0.2404 | 8.1502 | 14000 | 0.4680 | 0.8127 | 0.8175 | 0.8151 | 0.9809 |
89
+ | 0.2347 | 8.4413 | 14500 | 0.4723 | 0.8156 | 0.8160 | 0.8158 | 0.9810 |
90
+ | 0.2356 | 8.7324 | 15000 | 0.4720 | 0.8115 | 0.8186 | 0.8151 | 0.9807 |
91
+ | 0.2347 | 9.0234 | 15500 | 0.4634 | 0.8199 | 0.8178 | 0.8188 | 0.9813 |
92
+ | 0.2301 | 9.3145 | 16000 | 0.4631 | 0.8172 | 0.8158 | 0.8165 | 0.9809 |
93
+ | 0.2287 | 9.6056 | 16500 | 0.4621 | 0.8125 | 0.8147 | 0.8136 | 0.9808 |
94
+ | 0.2253 | 9.8967 | 17000 | 0.4655 | 0.8114 | 0.8137 | 0.8126 | 0.9807 |
95
+
96
+
97
+ ### Framework versions
98
+
99
+ - Transformers 4.44.2
100
+ - Pytorch 2.1.1+cu121
101
+ - Datasets 2.14.5
102
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "FacebookAI/xlm-roberta-base",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 6,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.4594594594594595, "recall": 0.6938775510204082, "f1": 0.5528455284552845, "accuracy": 0.9583011583011583}, "en_pud": {"precision": 0.7752918287937743, "recall": 0.7413953488372093, "f1": 0.7579648121730861, "accuracy": 0.9774744994333208}, "de_pud": {"precision": 0.7380281690140845, "recall": 0.7564966313763234, "f1": 0.747148288973384, "accuracy": 0.9729501664244526}, "pt_pud": {"precision": 0.8408488063660478, "recall": 0.8653321201091901, "f1": 0.852914798206278, "accuracy": 0.9856880420387064}, "ru_pud": {"precision": 0.7012369172216937, "recall": 0.7113899613899614, "f1": 0.7062769525634883, "accuracy": 0.9706535778868509}, "sv_pud": {"precision": 0.8356299212598425, "recall": 0.8250728862973761, "f1": 0.8303178484107578, "accuracy": 0.9836443698888656}, "tl_trg": {"precision": 0.8333333333333334, "recall": 0.8695652173913043, "f1": 0.851063829787234, "accuracy": 0.9904632152588556}, "tl_ugnayan": {"precision": 0.4634146341463415, "recall": 0.5757575757575758, "f1": 0.5135135135135135, "accuracy": 0.968094804010939}, "zh_gsd": {"precision": 0.8099606815203145, "recall": 0.8057366362451108, "f1": 0.8078431372549019, "accuracy": 0.9725274725274725}, "zh_gsdsimp": {"precision": 0.8225165562913908, "recall": 0.8138925294888598, "f1": 0.8181818181818183, "accuracy": 0.9741924741924742}, "hr_set": {"precision": 0.8877266387726639, "recall": 0.9073414112615823, "f1": 0.8974268593584772, "accuracy": 0.9866859027205276}, "da_ddt": {"precision": 0.8605200945626478, "recall": 0.814317673378076, "f1": 0.8367816091954022, "accuracy": 0.9877282250823107}, "en_ewt": {"precision": 0.7806072477962782, "recall": 0.7325367647058824, "f1": 0.7558084400189664, "accuracy": 0.9747778618958441}, "pt_bosque": {"precision": 0.8312858312858313, "recall": 0.8353909465020576, "f1": 0.8333333333333334, "accuracy": 0.9842414142877843}, "sr_set": {"precision": 0.9259259259259259, "recall": 0.9149940968122786, "f1": 0.9204275534441805, "accuracy": 0.9871289729445758}, "sk_snk": {"precision": 0.7758620689655172, "recall": 0.7377049180327869, "f1": 0.7563025210084033, "accuracy": 0.9665515075376885}, "sv_talbanken": {"precision": 0.8349056603773585, "recall": 0.9030612244897959, "f1": 0.8676470588235294, "accuracy": 0.9974481032536684}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8194652d7ecc7cc7565989bf9ce416b9a39b76bc2194d78801252035d674a62e
3
+ size 939737140
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fa39205e561ea98697f70a7a891dcd020ac734159bf1699413527f093f07706
3
+ size 5304