haryoaw commited on
Commit
7bcac92
1 Parent(s): 2b44996

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +60 -60
  2. config.json +14 -21
  3. eval_result_ner.json +1 -1
  4. model.safetensors +2 -2
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: microsoft/mdeberta-v3-base
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-kd-pre-ner-full_data-univner_full44
14
  results: []
@@ -19,13 +19,13 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  # scenario-kd-pre-ner-full_data-univner_full44
21
 
22
- This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.3659
25
- - Precision: 0.7946
26
- - Recall: 0.7449
27
- - F1: 0.7689
28
- - Accuracy: 0.9763
29
 
30
  ## Model description
31
 
@@ -56,57 +56,57 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 1.5072 | 0.5828 | 500 | 0.9151 | 0.3892 | 0.3372 | 0.3613 | 0.9429 |
60
- | 0.7728 | 1.1655 | 1000 | 0.6598 | 0.6047 | 0.5895 | 0.5970 | 0.9617 |
61
- | 0.569 | 1.7483 | 1500 | 0.5731 | 0.6900 | 0.6452 | 0.6669 | 0.9673 |
62
- | 0.4528 | 2.3310 | 2000 | 0.5193 | 0.7018 | 0.7077 | 0.7047 | 0.9702 |
63
- | 0.3907 | 2.9138 | 2500 | 0.5072 | 0.6870 | 0.7065 | 0.6966 | 0.9695 |
64
- | 0.3307 | 3.4965 | 3000 | 0.4704 | 0.7214 | 0.7267 | 0.7241 | 0.9727 |
65
- | 0.295 | 4.0793 | 3500 | 0.4798 | 0.7281 | 0.7191 | 0.7236 | 0.9724 |
66
- | 0.2549 | 4.6620 | 4000 | 0.4596 | 0.7474 | 0.7145 | 0.7305 | 0.9728 |
67
- | 0.2397 | 5.2448 | 4500 | 0.4499 | 0.7406 | 0.7338 | 0.7372 | 0.9733 |
68
- | 0.2159 | 5.8275 | 5000 | 0.4461 | 0.7348 | 0.7446 | 0.7397 | 0.9731 |
69
- | 0.1996 | 6.4103 | 5500 | 0.4422 | 0.7428 | 0.7301 | 0.7364 | 0.9735 |
70
- | 0.1905 | 6.9930 | 6000 | 0.4487 | 0.7716 | 0.7165 | 0.7430 | 0.9737 |
71
- | 0.1772 | 7.5758 | 6500 | 0.4572 | 0.7573 | 0.7344 | 0.7457 | 0.9739 |
72
- | 0.169 | 8.1585 | 7000 | 0.4287 | 0.7623 | 0.7402 | 0.7510 | 0.9743 |
73
- | 0.1631 | 8.7413 | 7500 | 0.4288 | 0.7666 | 0.7332 | 0.7496 | 0.9746 |
74
- | 0.153 | 9.3240 | 8000 | 0.4297 | 0.7462 | 0.7605 | 0.7533 | 0.9743 |
75
- | 0.1503 | 9.9068 | 8500 | 0.4278 | 0.7626 | 0.7387 | 0.7505 | 0.9743 |
76
- | 0.143 | 10.4895 | 9000 | 0.4280 | 0.7782 | 0.7335 | 0.7552 | 0.9746 |
77
- | 0.1399 | 11.0723 | 9500 | 0.4153 | 0.7734 | 0.7394 | 0.7560 | 0.9751 |
78
- | 0.1352 | 11.6550 | 10000 | 0.4132 | 0.7668 | 0.7596 | 0.7632 | 0.9753 |
79
- | 0.1313 | 12.2378 | 10500 | 0.4122 | 0.7687 | 0.7430 | 0.7556 | 0.9751 |
80
- | 0.1289 | 12.8205 | 11000 | 0.4105 | 0.7785 | 0.7417 | 0.7597 | 0.9754 |
81
- | 0.1248 | 13.4033 | 11500 | 0.4064 | 0.7848 | 0.7433 | 0.7635 | 0.9756 |
82
- | 0.1248 | 13.9860 | 12000 | 0.3996 | 0.7761 | 0.7550 | 0.7654 | 0.9756 |
83
- | 0.1194 | 14.5688 | 12500 | 0.4272 | 0.7861 | 0.7217 | 0.7525 | 0.9742 |
84
- | 0.1178 | 15.1515 | 13000 | 0.4010 | 0.7803 | 0.7517 | 0.7657 | 0.9753 |
85
- | 0.1182 | 15.7343 | 13500 | 0.3894 | 0.7701 | 0.7569 | 0.7634 | 0.9756 |
86
- | 0.1131 | 16.3170 | 14000 | 0.3935 | 0.7798 | 0.7546 | 0.7670 | 0.9757 |
87
- | 0.1119 | 16.8998 | 14500 | 0.4056 | 0.7866 | 0.7377 | 0.7614 | 0.9752 |
88
- | 0.1094 | 17.4825 | 15000 | 0.3911 | 0.7799 | 0.7507 | 0.7650 | 0.9760 |
89
- | 0.1082 | 18.0653 | 15500 | 0.3879 | 0.7793 | 0.7508 | 0.7648 | 0.9758 |
90
- | 0.1061 | 18.6480 | 16000 | 0.3826 | 0.7834 | 0.7498 | 0.7662 | 0.9762 |
91
- | 0.106 | 19.2308 | 16500 | 0.3920 | 0.7816 | 0.7449 | 0.7628 | 0.9756 |
92
- | 0.1047 | 19.8135 | 17000 | 0.3837 | 0.7812 | 0.7527 | 0.7667 | 0.9762 |
93
- | 0.1032 | 20.3963 | 17500 | 0.3882 | 0.8024 | 0.7290 | 0.7640 | 0.9757 |
94
- | 0.1027 | 20.9790 | 18000 | 0.3851 | 0.7879 | 0.7357 | 0.7609 | 0.9758 |
95
- | 0.101 | 21.5618 | 18500 | 0.3833 | 0.7893 | 0.7381 | 0.7628 | 0.9756 |
96
- | 0.1002 | 22.1445 | 19000 | 0.3865 | 0.8027 | 0.7413 | 0.7708 | 0.9762 |
97
- | 0.0984 | 22.7273 | 19500 | 0.3766 | 0.7807 | 0.7474 | 0.7637 | 0.9758 |
98
- | 0.0988 | 23.3100 | 20000 | 0.3786 | 0.7835 | 0.7448 | 0.7637 | 0.9758 |
99
- | 0.0968 | 23.8928 | 20500 | 0.3744 | 0.7889 | 0.7478 | 0.7678 | 0.9763 |
100
- | 0.0958 | 24.4755 | 21000 | 0.3752 | 0.7953 | 0.7402 | 0.7668 | 0.9760 |
101
- | 0.0971 | 25.0583 | 21500 | 0.3713 | 0.7908 | 0.7549 | 0.7724 | 0.9766 |
102
- | 0.0952 | 25.6410 | 22000 | 0.3714 | 0.7892 | 0.7547 | 0.7716 | 0.9764 |
103
- | 0.0947 | 26.2238 | 22500 | 0.3731 | 0.8009 | 0.7377 | 0.7680 | 0.9761 |
104
- | 0.0954 | 26.8065 | 23000 | 0.3727 | 0.7957 | 0.7504 | 0.7724 | 0.9765 |
105
- | 0.0939 | 27.3893 | 23500 | 0.3706 | 0.7872 | 0.7505 | 0.7684 | 0.9764 |
106
- | 0.0939 | 27.9720 | 24000 | 0.3689 | 0.7979 | 0.7481 | 0.7722 | 0.9764 |
107
- | 0.0938 | 28.5548 | 24500 | 0.3665 | 0.7941 | 0.7556 | 0.7744 | 0.9765 |
108
- | 0.0938 | 29.1375 | 25000 | 0.3615 | 0.7930 | 0.7490 | 0.7703 | 0.9764 |
109
- | 0.0937 | 29.7203 | 25500 | 0.3659 | 0.7946 | 0.7449 | 0.7689 | 0.9763 |
110
 
111
 
112
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: FacebookAI/xlm-roberta-base
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-kd-pre-ner-full_data-univner_full44
14
  results: []
 
19
 
20
  # scenario-kd-pre-ner-full_data-univner_full44
21
 
22
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.4381
25
+ - Precision: 0.8004
26
+ - Recall: 0.7801
27
+ - F1: 0.7902
28
+ - Accuracy: 0.9786
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 1.4593 | 0.5828 | 500 | 0.8367 | 0.6935 | 0.6559 | 0.6742 | 0.9682 |
60
+ | 0.7232 | 1.1655 | 1000 | 0.7569 | 0.7339 | 0.6980 | 0.7155 | 0.9724 |
61
+ | 0.594 | 1.7483 | 1500 | 0.6330 | 0.7335 | 0.7451 | 0.7392 | 0.9741 |
62
+ | 0.4986 | 2.3310 | 2000 | 0.6003 | 0.7291 | 0.7552 | 0.7419 | 0.9746 |
63
+ | 0.446 | 2.9138 | 2500 | 0.5729 | 0.7403 | 0.7601 | 0.7501 | 0.9747 |
64
+ | 0.385 | 3.4965 | 3000 | 0.5584 | 0.7441 | 0.7617 | 0.7528 | 0.9757 |
65
+ | 0.3605 | 4.0793 | 3500 | 0.5602 | 0.7615 | 0.7575 | 0.7595 | 0.9758 |
66
+ | 0.3172 | 4.6620 | 4000 | 0.5417 | 0.7546 | 0.7725 | 0.7634 | 0.9764 |
67
+ | 0.3061 | 5.2448 | 4500 | 0.5329 | 0.7884 | 0.7485 | 0.7680 | 0.9769 |
68
+ | 0.2856 | 5.8275 | 5000 | 0.5194 | 0.7837 | 0.7618 | 0.7726 | 0.9769 |
69
+ | 0.2642 | 6.4103 | 5500 | 0.5154 | 0.7622 | 0.7780 | 0.7700 | 0.9765 |
70
+ | 0.2592 | 6.9930 | 6000 | 0.5193 | 0.7882 | 0.7572 | 0.7724 | 0.9764 |
71
+ | 0.2401 | 7.5758 | 6500 | 0.5123 | 0.7727 | 0.7599 | 0.7663 | 0.9763 |
72
+ | 0.2344 | 8.1585 | 7000 | 0.4987 | 0.7742 | 0.7736 | 0.7739 | 0.9771 |
73
+ | 0.2234 | 8.7413 | 7500 | 0.4914 | 0.7894 | 0.7640 | 0.7764 | 0.9777 |
74
+ | 0.2131 | 9.3240 | 8000 | 0.4856 | 0.7691 | 0.7827 | 0.7758 | 0.9770 |
75
+ | 0.2089 | 9.9068 | 8500 | 0.4898 | 0.7895 | 0.7655 | 0.7773 | 0.9773 |
76
+ | 0.1972 | 10.4895 | 9000 | 0.4860 | 0.7828 | 0.7726 | 0.7777 | 0.9775 |
77
+ | 0.1942 | 11.0723 | 9500 | 0.4787 | 0.7807 | 0.7807 | 0.7807 | 0.9776 |
78
+ | 0.1854 | 11.6550 | 10000 | 0.4858 | 0.7916 | 0.7635 | 0.7773 | 0.9771 |
79
+ | 0.183 | 12.2378 | 10500 | 0.4739 | 0.7924 | 0.7800 | 0.7862 | 0.9779 |
80
+ | 0.1781 | 12.8205 | 11000 | 0.4741 | 0.7990 | 0.7661 | 0.7822 | 0.9779 |
81
+ | 0.1704 | 13.4033 | 11500 | 0.4622 | 0.7937 | 0.7719 | 0.7826 | 0.9784 |
82
+ | 0.1698 | 13.9860 | 12000 | 0.4650 | 0.8000 | 0.7657 | 0.7825 | 0.9777 |
83
+ | 0.1635 | 14.5688 | 12500 | 0.4604 | 0.7913 | 0.7778 | 0.7845 | 0.9782 |
84
+ | 0.1605 | 15.1515 | 13000 | 0.4656 | 0.7990 | 0.7605 | 0.7793 | 0.9774 |
85
+ | 0.1559 | 15.7343 | 13500 | 0.4638 | 0.8001 | 0.7658 | 0.7826 | 0.9778 |
86
+ | 0.1531 | 16.3170 | 14000 | 0.4550 | 0.7991 | 0.7735 | 0.7861 | 0.9780 |
87
+ | 0.1519 | 16.8998 | 14500 | 0.4606 | 0.7949 | 0.7735 | 0.7841 | 0.9780 |
88
+ | 0.1482 | 17.4825 | 15000 | 0.4483 | 0.7947 | 0.7831 | 0.7889 | 0.9787 |
89
+ | 0.1449 | 18.0653 | 15500 | 0.4521 | 0.7947 | 0.7722 | 0.7833 | 0.9780 |
90
+ | 0.1407 | 18.6480 | 16000 | 0.4508 | 0.7932 | 0.7728 | 0.7829 | 0.9780 |
91
+ | 0.1415 | 19.2308 | 16500 | 0.4484 | 0.8031 | 0.7728 | 0.7876 | 0.9785 |
92
+ | 0.1385 | 19.8135 | 17000 | 0.4461 | 0.7991 | 0.7774 | 0.7881 | 0.9785 |
93
+ | 0.1358 | 20.3963 | 17500 | 0.4488 | 0.7970 | 0.7756 | 0.7862 | 0.9783 |
94
+ | 0.1358 | 20.9790 | 18000 | 0.4431 | 0.8006 | 0.7772 | 0.7887 | 0.9787 |
95
+ | 0.1325 | 21.5618 | 18500 | 0.4395 | 0.8053 | 0.7768 | 0.7908 | 0.9785 |
96
+ | 0.1322 | 22.1445 | 19000 | 0.4461 | 0.7960 | 0.7725 | 0.7841 | 0.9780 |
97
+ | 0.1296 | 22.7273 | 19500 | 0.4401 | 0.7988 | 0.7746 | 0.7866 | 0.9781 |
98
+ | 0.1288 | 23.3100 | 20000 | 0.4416 | 0.7961 | 0.7690 | 0.7823 | 0.9781 |
99
+ | 0.1271 | 23.8928 | 20500 | 0.4450 | 0.8024 | 0.7673 | 0.7844 | 0.9781 |
100
+ | 0.1246 | 24.4755 | 21000 | 0.4403 | 0.7967 | 0.7703 | 0.7833 | 0.9782 |
101
+ | 0.1254 | 25.0583 | 21500 | 0.4403 | 0.7976 | 0.7742 | 0.7857 | 0.9782 |
102
+ | 0.1231 | 25.6410 | 22000 | 0.4438 | 0.8057 | 0.7694 | 0.7872 | 0.9783 |
103
+ | 0.1228 | 26.2238 | 22500 | 0.4365 | 0.8058 | 0.7741 | 0.7896 | 0.9785 |
104
+ | 0.1224 | 26.8065 | 23000 | 0.4325 | 0.7995 | 0.7806 | 0.7899 | 0.9787 |
105
+ | 0.1211 | 27.3893 | 23500 | 0.4402 | 0.8058 | 0.7676 | 0.7862 | 0.9782 |
106
+ | 0.1202 | 27.9720 | 24000 | 0.4378 | 0.8017 | 0.7689 | 0.7849 | 0.9784 |
107
+ | 0.1201 | 28.5548 | 24500 | 0.4331 | 0.8000 | 0.7784 | 0.7890 | 0.9786 |
108
+ | 0.12 | 29.1375 | 25000 | 0.4317 | 0.7999 | 0.7794 | 0.7895 | 0.9787 |
109
+ | 0.1194 | 29.7203 | 25500 | 0.4381 | 0.8004 | 0.7801 | 0.7902 | 0.9786 |
110
 
111
 
112
  ### Framework versions
config.json CHANGED
@@ -1,9 +1,12 @@
1
  {
2
- "_name_or_path": "microsoft/mdeberta-v3-base",
3
  "architectures": [
4
- "DebertaForTokenClassificationKD"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
 
 
 
7
  "hidden_act": "gelu",
8
  "hidden_dropout_prob": 0.1,
9
  "hidden_size": 768,
@@ -27,27 +30,17 @@
27
  "LABEL_5": 5,
28
  "LABEL_6": 6
29
  },
30
- "layer_norm_eps": 1e-07,
31
- "max_position_embeddings": 512,
32
- "max_relative_positions": -1,
33
- "model_type": "deberta-v2",
34
- "norm_rel_ebd": "layer_norm",
35
  "num_attention_heads": 12,
36
  "num_hidden_layers": 6,
37
- "pad_token_id": 0,
38
- "pooler_dropout": 0,
39
- "pooler_hidden_act": "gelu",
40
- "pooler_hidden_size": 768,
41
- "pos_att_type": [
42
- "p2c",
43
- "c2p"
44
- ],
45
- "position_biased_input": false,
46
- "position_buckets": 256,
47
- "relative_attention": true,
48
- "share_att_key": true,
49
  "torch_dtype": "float32",
50
  "transformers_version": "4.44.2",
51
- "type_vocab_size": 0,
52
- "vocab_size": 251000
 
53
  }
 
1
  {
2
+ "_name_or_path": "FacebookAI/xlm-roberta-base",
3
  "architectures": [
4
+ "XLMRobertaForTokenClassificationKD"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
  "hidden_act": "gelu",
11
  "hidden_dropout_prob": 0.1,
12
  "hidden_size": 768,
 
30
  "LABEL_5": 5,
31
  "LABEL_6": 6
32
  },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
 
 
36
  "num_attention_heads": 12,
37
  "num_hidden_layers": 6,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
 
 
 
 
 
 
 
 
 
41
  "torch_dtype": "float32",
42
  "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
  }
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.5342465753424658, "recall": 0.7959183673469388, "f1": 0.6393442622950819, "accuracy": 0.9644787644787645}, "en_pud": {"precision": 0.7855731225296443, "recall": 0.7395348837209302, "f1": 0.7618591279348347, "accuracy": 0.9763411409142425}, "de_pud": {"precision": 0.7240663900414938, "recall": 0.6717998075072185, "f1": 0.6969545681477782, "accuracy": 0.9683559139280858}, "pt_pud": {"precision": 0.7842364532019704, "recall": 0.724294813466788, "f1": 0.7530747398297067, "accuracy": 0.9752210877088051}, "ru_pud": {"precision": 0.6180422264875239, "recall": 0.6216216216216216, "f1": 0.6198267564966313, "accuracy": 0.9624903125807285}, "sv_pud": {"precision": 0.8123620309050773, "recall": 0.7152575315840622, "f1": 0.7607235142118863, "accuracy": 0.9763053050954078}, "tl_trg": {"precision": 0.6071428571428571, "recall": 0.7391304347826086, "f1": 0.6666666666666666, "accuracy": 0.9782016348773842}, "tl_ugnayan": {"precision": 0.5384615384615384, "recall": 0.6363636363636364, "f1": 0.5833333333333334, "accuracy": 0.9699179580674567}, "zh_gsd": {"precision": 0.8068783068783069, "recall": 0.7953063885267275, "f1": 0.8010505581089954, "accuracy": 0.973026973026973}, "zh_gsdsimp": {"precision": 0.8166894664842681, "recall": 0.7824377457404981, "f1": 0.7991967871485943, "accuracy": 0.9711122211122211}, "hr_set": {"precision": 0.8654646324549237, "recall": 0.8895224518888097, "f1": 0.8773286467486819, "accuracy": 0.984830997526793}, "da_ddt": {"precision": 0.7962466487935657, "recall": 0.6644295302013423, "f1": 0.724390243902439, "accuracy": 0.9789484186371346}, "en_ewt": {"precision": 0.81, "recall": 0.7444852941176471, "f1": 0.7758620689655172, "accuracy": 0.9770888950870622}, "pt_bosque": {"precision": 0.781099324975892, "recall": 0.6666666666666666, "f1": 0.7193605683836589, "accuracy": 0.9711273728445153}, "sr_set": {"precision": 0.8881036513545347, "recall": 0.8902007083825265, "f1": 0.8891509433962264, "accuracy": 0.9835390946502057}, "sk_snk": {"precision": 0.6925972396486826, "recall": 0.6032786885245902, "f1": 0.6448598130841122, "accuracy": 0.9532035175879398}, "sv_talbanken": {"precision": 0.8691099476439791, "recall": 0.8469387755102041, "f1": 0.8578811369509044, "accuracy": 0.9973499533788095}}
 
1
+ {"ceb_gja": {"precision": 0.6140350877192983, "recall": 0.7142857142857143, "f1": 0.6603773584905661, "accuracy": 0.9691119691119691}, "en_pud": {"precision": 0.7703488372093024, "recall": 0.7395348837209302, "f1": 0.7546274323682961, "accuracy": 0.976435587457499}, "de_pud": {"precision": 0.7527638190954774, "recall": 0.7208854667949952, "f1": 0.7364798426745329, "accuracy": 0.9719188036191458}, "pt_pud": {"precision": 0.8152380952380952, "recall": 0.7788898999090081, "f1": 0.796649604467194, "accuracy": 0.9806895373178963}, "ru_pud": {"precision": 0.6679499518768046, "recall": 0.6698841698841699, "f1": 0.6689156626506023, "accuracy": 0.9669852751227073}, "sv_pud": {"precision": 0.8302469135802469, "recall": 0.7842565597667639, "f1": 0.8065967016491754, "accuracy": 0.9807611658628643}, "tl_trg": {"precision": 0.7916666666666666, "recall": 0.8260869565217391, "f1": 0.8085106382978724, "accuracy": 0.989100817438692}, "tl_ugnayan": {"precision": 0.6774193548387096, "recall": 0.6363636363636364, "f1": 0.65625, "accuracy": 0.9726526891522334}, "zh_gsd": {"precision": 0.8073394495412844, "recall": 0.803129074315515, "f1": 0.8052287581699348, "accuracy": 0.9725274725274725}, "zh_gsdsimp": {"precision": 0.8204081632653061, "recall": 0.7903014416775884, "f1": 0.8050734312416555, "accuracy": 0.9723609723609724}, "hr_set": {"precision": 0.8908450704225352, "recall": 0.9016393442622951, "f1": 0.8962097059865392, "accuracy": 0.9874690849134378}, "da_ddt": {"precision": 0.8152709359605911, "recall": 0.7404921700223713, "f1": 0.7760844079718641, "accuracy": 0.9831387808041504}, "en_ewt": {"precision": 0.8059701492537313, "recall": 0.7444852941176471, "f1": 0.7740086000955566, "accuracy": 0.9770888950870622}, "pt_bosque": {"precision": 0.7911985018726592, "recall": 0.6954732510288066, "f1": 0.7402540516863776, "accuracy": 0.97616287494566}, "sr_set": {"precision": 0.9170616113744076, "recall": 0.9138134592680047, "f1": 0.9154346540508574, "accuracy": 0.9883547850450923}, "sk_snk": {"precision": 0.7004716981132075, "recall": 0.6491803278688525, "f1": 0.6738513896766876, "accuracy": 0.956265703517588}, "sv_talbanken": {"precision": 0.8374384236453202, "recall": 0.8673469387755102, "f1": 0.8521303258145363, "accuracy": 0.997202728566521}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d7b5ff17e299bc99ae324ac98b611d8927e8d65fac29cdc46abe95cca444eaf7
3
- size 944366708
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e387e84fbf9e6492c9581ecfd084713f06ca8a8c7d602b5ad947fe5fed568ea
3
+ size 939737140
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5c0840826875334f48e6d900981f8208516bfee1e586c486407f6faaed14e152
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e797e61d5ad0cad7bf5016670368d7b64ade6b5ebcf4570b0b1fd9491339e87b
3
  size 5304