--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scenario-kd-pre-ner-full_data-univner_full66 results: [] --- # scenario-kd-pre-ner-full_data-univner_full66 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5549 - Precision: 0.7660 - Recall: 0.7319 - F1: 0.7485 - Accuracy: 0.9802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.2484 | 1.2755 | 500 | 0.8737 | 0.6792 | 0.5631 | 0.6157 | 0.9709 | | 0.6459 | 2.5510 | 1000 | 0.7190 | 0.6926 | 0.6739 | 0.6831 | 0.9771 | | 0.5071 | 3.8265 | 1500 | 0.6650 | 0.7076 | 0.6863 | 0.6968 | 0.9773 | | 0.4233 | 5.1020 | 2000 | 0.6513 | 0.6933 | 0.7019 | 0.6975 | 0.9775 | | 0.3655 | 6.3776 | 2500 | 0.6252 | 0.7421 | 0.6822 | 0.7109 | 0.9778 | | 0.3251 | 7.6531 | 3000 | 0.6172 | 0.7412 | 0.7174 | 0.7291 | 0.9791 | | 0.2963 | 8.9286 | 3500 | 0.6204 | 0.7143 | 0.6677 | 0.6902 | 0.9773 | | 0.2699 | 10.2041 | 4000 | 0.5919 | 0.7310 | 0.7288 | 0.7299 | 0.9792 | | 0.2469 | 11.4796 | 4500 | 0.6168 | 0.7560 | 0.6863 | 0.7195 | 0.9788 | | 0.2313 | 12.7551 | 5000 | 0.5871 | 0.7353 | 0.7133 | 0.7241 | 0.9792 | | 0.2148 | 14.0306 | 5500 | 0.5947 | 0.7358 | 0.7122 | 0.7238 | 0.9794 | | 0.2022 | 15.3061 | 6000 | 0.5830 | 0.7298 | 0.7019 | 0.7156 | 0.9790 | | 0.1933 | 16.5816 | 6500 | 0.5734 | 0.7427 | 0.7143 | 0.7282 | 0.9794 | | 0.185 | 17.8571 | 7000 | 0.5814 | 0.7352 | 0.6957 | 0.7149 | 0.9792 | | 0.1767 | 19.1327 | 7500 | 0.5670 | 0.7516 | 0.7236 | 0.7373 | 0.9797 | | 0.1688 | 20.4082 | 8000 | 0.5770 | 0.7551 | 0.6957 | 0.7241 | 0.9791 | | 0.1634 | 21.6837 | 8500 | 0.5621 | 0.7443 | 0.7143 | 0.7290 | 0.9792 | | 0.1592 | 22.9592 | 9000 | 0.5691 | 0.7495 | 0.7091 | 0.7287 | 0.9790 | | 0.1538 | 24.2347 | 9500 | 0.5557 | 0.7481 | 0.7195 | 0.7335 | 0.9802 | | 0.1513 | 25.5102 | 10000 | 0.5687 | 0.7446 | 0.7091 | 0.7264 | 0.9791 | | 0.1489 | 26.7857 | 10500 | 0.5554 | 0.7623 | 0.7236 | 0.7424 | 0.9801 | | 0.145 | 28.0612 | 11000 | 0.5488 | 0.7564 | 0.7329 | 0.7445 | 0.9804 | | 0.144 | 29.3367 | 11500 | 0.5549 | 0.7660 | 0.7319 | 0.7485 | 0.9802 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1