haryoaw commited on
Commit
096b04e
·
verified ·
1 Parent(s): 8776554

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +74 -0
  2. config.json +53 -0
  3. eval_result_ner.json +1 -0
  4. pytorch_model.bin +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: scenario-kd-scr-ner-full-mdeberta-halfen_data-univner_en66
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # scenario-kd-scr-ner-full-mdeberta-halfen_data-univner_en66
20
+
21
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 392.9234
24
+ - Precision: 0.5127
25
+ - Recall: 0.3975
26
+ - F1: 0.4478
27
+ - Accuracy: 0.9594
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 32
49
+ - seed: 66
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 32
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 10
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
60
+ | 603.5902 | 1.28 | 500 | 532.0310 | 0.7568 | 0.0290 | 0.0558 | 0.9414 |
61
+ | 497.4866 | 2.55 | 1000 | 479.9597 | 0.2891 | 0.1646 | 0.2098 | 0.9463 |
62
+ | 451.2688 | 3.83 | 1500 | 443.6332 | 0.4884 | 0.2619 | 0.3410 | 0.9526 |
63
+ | 420.4378 | 5.1 | 2000 | 421.6972 | 0.4431 | 0.3789 | 0.4085 | 0.9567 |
64
+ | 400.9749 | 6.38 | 2500 | 408.6700 | 0.5306 | 0.3230 | 0.4015 | 0.9574 |
65
+ | 388.4506 | 7.65 | 3000 | 398.0555 | 0.5026 | 0.4037 | 0.4478 | 0.9596 |
66
+ | 380.4155 | 8.93 | 3500 | 392.9234 | 0.5127 | 0.3975 | 0.4478 | 0.9594 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.33.3
72
+ - Pytorch 2.1.1+cu121
73
+ - Datasets 2.14.5
74
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "DebertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "LABEL_0": 0,
23
+ "LABEL_1": 1,
24
+ "LABEL_2": 2,
25
+ "LABEL_3": 3,
26
+ "LABEL_4": 4,
27
+ "LABEL_5": 5,
28
+ "LABEL_6": 6
29
+ },
30
+ "layer_norm_eps": 1e-07,
31
+ "max_position_embeddings": 512,
32
+ "max_relative_positions": -1,
33
+ "model_type": "deberta-v2",
34
+ "norm_rel_ebd": "layer_norm",
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 0,
38
+ "pooler_dropout": 0,
39
+ "pooler_hidden_act": "gelu",
40
+ "pooler_hidden_size": 768,
41
+ "pos_att_type": [
42
+ "p2c",
43
+ "c2p"
44
+ ],
45
+ "position_biased_input": false,
46
+ "position_buckets": 256,
47
+ "relative_attention": true,
48
+ "share_att_key": true,
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.33.3",
51
+ "type_vocab_size": 0,
52
+ "vocab_size": 251000
53
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.09876543209876543, "recall": 0.16326530612244897, "f1": 0.12307692307692308, "accuracy": 0.9011583011583012}, "en_pud": {"precision": 0.4186704384724187, "recall": 0.2753488372093023, "f1": 0.3322109988776656, "accuracy": 0.9407820173781639}, "de_pud": {"precision": 0.0755750273822563, "recall": 0.13282001924927817, "f1": 0.09633507853403142, "accuracy": 0.8466551029018798}, "pt_pud": {"precision": 0.11568409343715239, "recall": 0.09463148316651501, "f1": 0.1041041041041041, "accuracy": 0.9050711325671807}, "ru_pud": {"precision": 0.011221122112211221, "recall": 0.016409266409266408, "f1": 0.013328106624852998, "accuracy": 0.8327563936967192}, "sv_pud": {"precision": 0.10925196850393701, "recall": 0.10787172011661808, "f1": 0.10855745721271394, "accuracy": 0.8861396519186412}, "tl_trg": {"precision": 0.14634146341463414, "recall": 0.2608695652173913, "f1": 0.1875, "accuracy": 0.9182561307901907}, "tl_ugnayan": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9079307201458523}, "zh_gsd": {"precision": 0.050314465408805034, "recall": 0.010430247718383311, "f1": 0.01727861771058315, "accuracy": 0.8734598734598734}, "zh_gsdsimp": {"precision": 0.013793103448275862, "recall": 0.002621231979030144, "f1": 0.004405286343612335, "accuracy": 0.8736263736263736}, "hr_set": {"precision": 0.058290888511601587, "recall": 0.07341411261582323, "f1": 0.06498422712933755, "accuracy": 0.8544105523495465}, "da_ddt": {"precision": 0.1284153005464481, "recall": 0.10514541387024609, "f1": 0.11562115621156213, "accuracy": 0.9146961987428913}, "en_ewt": {"precision": 0.6038415366146459, "recall": 0.46231617647058826, "f1": 0.523685580426861, "accuracy": 0.9579631031597402}, "pt_bosque": {"precision": 0.10960334029227557, "recall": 0.08641975308641975, "f1": 0.09664058904739989, "accuracy": 0.9020794087813361}, "sr_set": {"precision": 0.04332129963898917, "recall": 0.04250295159386069, "f1": 0.04290822407628129, "accuracy": 0.8328517642938447}, "sk_snk": {"precision": 0.07249466950959488, "recall": 0.07431693989071038, "f1": 0.07339449541284404, "accuracy": 0.8283605527638191}, "sv_talbanken": {"precision": 0.029216467463479414, "recall": 0.11224489795918367, "f1": 0.04636459430979979, "accuracy": 0.9420915738332434}}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1815713744dd8490762373c8a8e22c2e16989dc32b4b3461345b7ca0cc18366a
3
+ size 972701090
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eb837cd1ca60159e1c11c033c4d2853dc7ef9f8165b28443b5d9fc23db380bc
3
+ size 4600