File size: 4,861 Bytes
fc2f4aa
c859ee1
fc2f4aa
 
 
 
 
 
 
c859ee1
 
fc2f4aa
 
 
 
 
 
 
 
 
 
 
 
d18ea7e
 
 
 
 
fc2f4aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b747363
 
d18ea7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc2f4aa
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
base_model: haryoaw/scenario-TCR-NER_data-univner_full
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-scr-ner-full-mdeberta_data-univner_full55
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-kd-scr-ner-full-mdeberta_data-univner_full55

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 182.5497
- Precision: 0.6804
- Recall: 0.6154
- F1: 0.6463
- Accuracy: 0.9657

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 55
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 627.6279      | 0.2911 | 500   | 560.3030        | 0.0       | 0.0    | 0.0    | 0.9241   |
| 529.0723      | 0.5822 | 1000  | 503.1468        | 0.3145    | 0.0378 | 0.0675 | 0.9253   |
| 481.2237      | 0.8732 | 1500  | 462.0725        | 0.3110    | 0.0811 | 0.1286 | 0.9284   |
| 443.6023      | 1.1643 | 2000  | 431.7476        | 0.4241    | 0.0822 | 0.1378 | 0.9304   |
| 413.7332      | 1.4554 | 2500  | 404.1758        | 0.4897    | 0.3199 | 0.3870 | 0.9448   |
| 389.6206      | 1.7465 | 3000  | 381.5862        | 0.5329    | 0.3800 | 0.4437 | 0.9494   |
| 368.3142      | 2.0375 | 3500  | 363.5359        | 0.5888    | 0.3769 | 0.4596 | 0.9507   |
| 349.4665      | 2.3286 | 4000  | 346.6397        | 0.5410    | 0.4793 | 0.5083 | 0.9539   |
| 333.3893      | 2.6197 | 4500  | 331.5422        | 0.6223    | 0.4291 | 0.5079 | 0.9550   |
| 318.8641      | 2.9108 | 5000  | 316.8669        | 0.5984    | 0.5612 | 0.5792 | 0.9597   |
| 303.8825      | 3.2019 | 5500  | 303.3675        | 0.6190    | 0.5569 | 0.5863 | 0.9608   |
| 290.8802      | 3.4929 | 6000  | 291.3924        | 0.6347    | 0.5390 | 0.5830 | 0.9606   |
| 279.9562      | 3.7840 | 6500  | 281.3740        | 0.6484    | 0.5403 | 0.5894 | 0.9613   |
| 268.853       | 4.0751 | 7000  | 270.4638        | 0.6513    | 0.5578 | 0.6009 | 0.9615   |
| 257.9733      | 4.3662 | 7500  | 260.5476        | 0.6536    | 0.5817 | 0.6156 | 0.9635   |
| 248.9305      | 4.6573 | 8000  | 251.8452        | 0.6631    | 0.5926 | 0.6258 | 0.9638   |
| 240.7242      | 4.9483 | 8500  | 243.8925        | 0.6587    | 0.5882 | 0.6215 | 0.9633   |
| 232.3709      | 5.2394 | 9000  | 236.3189        | 0.6514    | 0.6077 | 0.6288 | 0.9640   |
| 224.6698      | 5.5305 | 9500  | 229.3991        | 0.6675    | 0.5722 | 0.6162 | 0.9629   |
| 218.3664      | 5.8216 | 10000 | 223.3077        | 0.6788    | 0.5823 | 0.6269 | 0.9639   |
| 212.9249      | 6.1126 | 10500 | 217.2704        | 0.6717    | 0.6003 | 0.6340 | 0.9643   |
| 206.6058      | 6.4037 | 11000 | 211.8754        | 0.6570    | 0.6226 | 0.6393 | 0.9649   |
| 201.722       | 6.6948 | 11500 | 207.1151        | 0.6680    | 0.6210 | 0.6436 | 0.9650   |
| 197.034       | 6.9859 | 12000 | 202.9470        | 0.6805    | 0.6047 | 0.6403 | 0.9649   |
| 192.5555      | 7.2770 | 12500 | 199.1373        | 0.6749    | 0.6130 | 0.6425 | 0.9651   |
| 189.1607      | 7.5680 | 13000 | 195.9332        | 0.6605    | 0.6279 | 0.6438 | 0.9652   |
| 186.1884      | 7.8591 | 13500 | 193.1577        | 0.6772    | 0.6057 | 0.6395 | 0.9652   |
| 183.2947      | 8.1502 | 14000 | 190.2176        | 0.6697    | 0.6318 | 0.6502 | 0.9654   |
| 180.5764      | 8.4413 | 14500 | 187.9859        | 0.6970    | 0.6091 | 0.6501 | 0.9657   |
| 178.5341      | 8.7324 | 15000 | 186.4189        | 0.6843    | 0.5976 | 0.6380 | 0.9645   |
| 176.79        | 9.0234 | 15500 | 184.5720        | 0.6846    | 0.6198 | 0.6506 | 0.9661   |
| 175.528       | 9.3145 | 16000 | 183.8221        | 0.7059    | 0.5905 | 0.6431 | 0.9650   |
| 174.3179      | 9.6056 | 16500 | 182.7365        | 0.6842    | 0.6188 | 0.6498 | 0.9658   |
| 174.2736      | 9.8967 | 17000 | 182.5497        | 0.6804    | 0.6154 | 0.6463 | 0.9657   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1