--- library_name: transformers license: mit base_model: haryoaw/scenario-TCR-NER_data-univner_full tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scenario-kd-scr-ner-full-mdeberta_data-univner_full55 results: [] --- # scenario-kd-scr-ner-full-mdeberta_data-univner_full55 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 55 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:---:|:--------:| | 72900804.608 | 0.2911 | 500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 0.5822 | 1000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 0.8732 | 1500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 1.1643 | 2000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 1.4554 | 2500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 1.7465 | 3000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 2.0375 | 3500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 2.3286 | 4000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 2.6197 | 4500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 2.9108 | 5000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 3.2019 | 5500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 3.4929 | 6000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 3.7840 | 6500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 4.0751 | 7000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 4.3662 | 7500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 4.6573 | 8000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 4.9483 | 8500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 5.2394 | 9000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 5.5305 | 9500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 5.8216 | 10000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | | 0.0 | 6.1126 | 10500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1