haryoaw commited on
Commit
8be4091
1 Parent(s): aa3da4e

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +85 -0
  2. config.json +53 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-kd-scr-ner-full-mdeberta_data-univner_half44
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-kd-scr-ner-full-mdeberta_data-univner_half44
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 364.7336
25
+ - Precision: 0.3918
26
+ - Recall: 0.4292
27
+ - F1: 0.4096
28
+ - Accuracy: 0.9267
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 32
50
+ - seed: 44
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 637.6988 | 0.5828 | 500 | 570.9927 | 0.6154 | 0.0012 | 0.0023 | 0.9241 |
62
+ | 541.2212 | 1.1655 | 1000 | 524.6858 | 0.3571 | 0.0353 | 0.0643 | 0.9251 |
63
+ | 490.5141 | 1.7483 | 1500 | 492.2816 | 0.3048 | 0.1754 | 0.2227 | 0.9310 |
64
+ | 455.7006 | 2.3310 | 2000 | 474.9406 | 0.3064 | 0.2626 | 0.2828 | 0.9273 |
65
+ | 430.062 | 2.9138 | 2500 | 452.2111 | 0.3632 | 0.3073 | 0.3329 | 0.9298 |
66
+ | 408.0248 | 3.4965 | 3000 | 434.8791 | 0.3994 | 0.3220 | 0.3566 | 0.9341 |
67
+ | 390.2744 | 4.0793 | 3500 | 424.2673 | 0.3727 | 0.3444 | 0.3580 | 0.9307 |
68
+ | 374.3932 | 4.6620 | 4000 | 411.0975 | 0.4020 | 0.3979 | 0.3999 | 0.9328 |
69
+ | 362.2752 | 5.2448 | 4500 | 403.7659 | 0.3614 | 0.3963 | 0.3781 | 0.9239 |
70
+ | 350.9508 | 5.8275 | 5000 | 392.9673 | 0.3736 | 0.3855 | 0.3795 | 0.9296 |
71
+ | 341.7654 | 6.4103 | 5500 | 385.3136 | 0.4030 | 0.3972 | 0.4001 | 0.9302 |
72
+ | 334.4205 | 6.9930 | 6000 | 380.2038 | 0.3773 | 0.4142 | 0.3949 | 0.9263 |
73
+ | 327.3654 | 7.5758 | 6500 | 375.4951 | 0.3694 | 0.4276 | 0.3964 | 0.9227 |
74
+ | 322.1269 | 8.1585 | 7000 | 372.3464 | 0.3650 | 0.4338 | 0.3965 | 0.9209 |
75
+ | 318.558 | 8.7413 | 7500 | 366.4694 | 0.3970 | 0.4191 | 0.4078 | 0.9295 |
76
+ | 315.4182 | 9.3240 | 8000 | 365.6752 | 0.3861 | 0.4409 | 0.4117 | 0.9260 |
77
+ | 314.0958 | 9.9068 | 8500 | 364.7336 | 0.3918 | 0.4292 | 0.4096 | 0.9267 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.44.2
83
+ - Pytorch 2.1.1+cu121
84
+ - Datasets 2.14.5
85
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "DebertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "LABEL_0": 0,
23
+ "LABEL_1": 1,
24
+ "LABEL_2": 2,
25
+ "LABEL_3": 3,
26
+ "LABEL_4": 4,
27
+ "LABEL_5": 5,
28
+ "LABEL_6": 6
29
+ },
30
+ "layer_norm_eps": 1e-07,
31
+ "max_position_embeddings": 512,
32
+ "max_relative_positions": -1,
33
+ "model_type": "deberta-v2",
34
+ "norm_rel_ebd": "layer_norm",
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 0,
38
+ "pooler_dropout": 0,
39
+ "pooler_hidden_act": "gelu",
40
+ "pooler_hidden_size": 768,
41
+ "pos_att_type": [
42
+ "p2c",
43
+ "c2p"
44
+ ],
45
+ "position_biased_input": false,
46
+ "position_buckets": 256,
47
+ "relative_attention": true,
48
+ "share_att_key": true,
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.44.2",
51
+ "type_vocab_size": 0,
52
+ "vocab_size": 251000
53
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.25925925925925924, "recall": 0.2857142857142857, "f1": 0.2718446601941748, "accuracy": 0.938996138996139}, "en_pud": {"precision": 0.4773561811505508, "recall": 0.3627906976744186, "f1": 0.41226215644820297, "accuracy": 0.9457404608991311}, "de_pud": {"precision": 0.07544449783757809, "recall": 0.15110683349374399, "f1": 0.10064102564102564, "accuracy": 0.8120106886690732}, "pt_pud": {"precision": 0.13522267206477734, "recall": 0.15195632393084624, "f1": 0.14310197086546703, "accuracy": 0.8880676720639125}, "ru_pud": {"precision": 0.0129926375054136, "recall": 0.02895752895752896, "f1": 0.017937219730941704, "accuracy": 0.7211573236889692}, "sv_pud": {"precision": 0.09177927927927929, "recall": 0.15840621963070942, "f1": 0.1162210338680927, "accuracy": 0.8084504088907528}, "tl_trg": {"precision": 0.3235294117647059, "recall": 0.4782608695652174, "f1": 0.3859649122807018, "accuracy": 0.946866485013624}, "tl_ugnayan": {"precision": 0.09302325581395349, "recall": 0.12121212121212122, "f1": 0.10526315789473685, "accuracy": 0.9288969917958068}, "zh_gsd": {"precision": 0.6184738955823293, "recall": 0.6023468057366362, "f1": 0.6103038309114928, "accuracy": 0.9463869463869464}, "zh_gsdsimp": {"precision": 0.6358839050131926, "recall": 0.6317169069462647, "f1": 0.6337935568704799, "accuracy": 0.9500499500499501}, "hr_set": {"precision": 0.7299787384833452, "recall": 0.7341411261582323, "f1": 0.7320540156361052, "accuracy": 0.9683429513602638}, "da_ddt": {"precision": 0.12991452991452992, "recall": 0.17002237136465326, "f1": 0.1472868217054264, "accuracy": 0.8922478299910207}, "en_ewt": {"precision": 0.6374722838137472, "recall": 0.5284926470588235, "f1": 0.5778894472361809, "accuracy": 0.9600749093517154}, "pt_bosque": {"precision": 0.14318706697459585, "recall": 0.15308641975308643, "f1": 0.1479713603818616, "accuracy": 0.8951238950876684}, "sr_set": {"precision": 0.7095238095238096, "recall": 0.7036599763872491, "f1": 0.7065797273266153, "accuracy": 0.9556080903598634}, "sk_snk": {"precision": 0.15594541910331383, "recall": 0.17486338797814208, "f1": 0.1648634724368882, "accuracy": 0.8487751256281407}, "sv_talbanken": {"precision": 0.024229074889867842, "recall": 0.1683673469387755, "f1": 0.04236200256739409, "accuracy": 0.8741227854934485}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85f64e90687e9be3f80a0f472cd2603be746373a2913a1e37089364dd54a7cc5
3
+ size 972678148
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b983faa5186ba22fee5695761b3c78fa9280a735dbcfc971cf574fa4ace3f39
3
+ size 5304