haryoaw commited on
Commit
17d2363
1 Parent(s): 94cc436

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +85 -0
  2. config.json +53 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-kd-scr-ner-full-mdeberta_data-univner_half55
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-kd-scr-ner-full-mdeberta_data-univner_half55
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 369.5634
25
+ - Precision: 0.3741
26
+ - Recall: 0.4149
27
+ - F1: 0.3935
28
+ - Accuracy: 0.9238
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 32
50
+ - seed: 55
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 638.1208 | 0.5828 | 500 | 570.1356 | 1.0 | 0.0004 | 0.0009 | 0.9241 |
62
+ | 540.7434 | 1.1655 | 1000 | 524.2383 | 0.2886 | 0.0521 | 0.0882 | 0.9253 |
63
+ | 490.1496 | 1.7483 | 1500 | 493.6944 | 0.2927 | 0.1682 | 0.2137 | 0.9297 |
64
+ | 454.2343 | 2.3310 | 2000 | 471.6737 | 0.3338 | 0.2411 | 0.2800 | 0.9293 |
65
+ | 429.0546 | 2.9138 | 2500 | 450.0691 | 0.4515 | 0.2450 | 0.3176 | 0.9362 |
66
+ | 407.3853 | 3.4965 | 3000 | 436.8550 | 0.3570 | 0.2877 | 0.3186 | 0.9304 |
67
+ | 390.9232 | 4.0793 | 3500 | 424.0557 | 0.3848 | 0.3245 | 0.3521 | 0.9313 |
68
+ | 376.2085 | 4.6620 | 4000 | 417.5171 | 0.3349 | 0.3800 | 0.3561 | 0.9216 |
69
+ | 364.3876 | 5.2448 | 4500 | 404.9495 | 0.3708 | 0.3766 | 0.3737 | 0.9276 |
70
+ | 354.1139 | 5.8275 | 5000 | 398.9413 | 0.3534 | 0.3877 | 0.3697 | 0.9226 |
71
+ | 344.7845 | 6.4103 | 5500 | 394.6783 | 0.3273 | 0.4193 | 0.3676 | 0.9143 |
72
+ | 337.8201 | 6.9930 | 6000 | 382.1873 | 0.3881 | 0.3900 | 0.3891 | 0.9289 |
73
+ | 330.94 | 7.5758 | 6500 | 381.2287 | 0.3480 | 0.4074 | 0.3754 | 0.9188 |
74
+ | 326.2092 | 8.1585 | 7000 | 372.6259 | 0.4087 | 0.3877 | 0.3979 | 0.9306 |
75
+ | 322.0348 | 8.7413 | 7500 | 374.2613 | 0.3530 | 0.4144 | 0.3812 | 0.9184 |
76
+ | 319.0297 | 9.3240 | 8000 | 370.3267 | 0.3774 | 0.4131 | 0.3944 | 0.9239 |
77
+ | 317.8106 | 9.9068 | 8500 | 369.5634 | 0.3741 | 0.4149 | 0.3935 | 0.9238 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.44.2
83
+ - Pytorch 2.1.1+cu121
84
+ - Datasets 2.14.5
85
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "DebertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "LABEL_0": 0,
23
+ "LABEL_1": 1,
24
+ "LABEL_2": 2,
25
+ "LABEL_3": 3,
26
+ "LABEL_4": 4,
27
+ "LABEL_5": 5,
28
+ "LABEL_6": 6
29
+ },
30
+ "layer_norm_eps": 1e-07,
31
+ "max_position_embeddings": 512,
32
+ "max_relative_positions": -1,
33
+ "model_type": "deberta-v2",
34
+ "norm_rel_ebd": "layer_norm",
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 0,
38
+ "pooler_dropout": 0,
39
+ "pooler_hidden_act": "gelu",
40
+ "pooler_hidden_size": 768,
41
+ "pos_att_type": [
42
+ "p2c",
43
+ "c2p"
44
+ ],
45
+ "position_biased_input": false,
46
+ "position_buckets": 256,
47
+ "relative_attention": true,
48
+ "share_att_key": true,
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.44.2",
51
+ "type_vocab_size": 0,
52
+ "vocab_size": 251000
53
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.22857142857142856, "recall": 0.16326530612244897, "f1": 0.19047619047619044, "accuracy": 0.9428571428571428}, "en_pud": {"precision": 0.49299719887955185, "recall": 0.32744186046511625, "f1": 0.39351593068753493, "accuracy": 0.9451265583679638}, "de_pud": {"precision": 0.10109465550547328, "recall": 0.15110683349374399, "f1": 0.121141975308642, "accuracy": 0.8431859734658478}, "pt_pud": {"precision": 0.14026236125126135, "recall": 0.1264786169244768, "f1": 0.13301435406698564, "accuracy": 0.9017387960866408}, "ru_pud": {"precision": 0.008284023668639054, "recall": 0.013513513513513514, "f1": 0.010271460014673514, "accuracy": 0.7553087057607853}, "sv_pud": {"precision": 0.10943695479777954, "recall": 0.13411078717201166, "f1": 0.1205240174672489, "accuracy": 0.8570979240931013}, "tl_trg": {"precision": 0.2, "recall": 0.17391304347826086, "f1": 0.18604651162790697, "accuracy": 0.94141689373297}, "tl_ugnayan": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9152233363719234}, "zh_gsd": {"precision": 0.5997229916897507, "recall": 0.5645371577574967, "f1": 0.5815983881799864, "accuracy": 0.9458874458874459}, "zh_gsdsimp": {"precision": 0.6257142857142857, "recall": 0.5740498034076016, "f1": 0.5987696514012304, "accuracy": 0.9476356976356977}, "hr_set": {"precision": 0.724320241691843, "recall": 0.6835352815395581, "f1": 0.7033370003667034, "accuracy": 0.9643033800494641}, "da_ddt": {"precision": 0.18484848484848485, "recall": 0.13646532438478748, "f1": 0.157014157014157, "accuracy": 0.9196847251321959}, "en_ewt": {"precision": 0.6408629441624365, "recall": 0.4641544117647059, "f1": 0.5383795309168444, "accuracy": 0.9570466589632227}, "pt_bosque": {"precision": 0.16447368421052633, "recall": 0.1440329218106996, "f1": 0.153576129881527, "accuracy": 0.9027677148239386}, "sr_set": {"precision": 0.6807692307692308, "recall": 0.6269185360094451, "f1": 0.6527350952673633, "accuracy": 0.9487785657998424}, "sk_snk": {"precision": 0.11686746987951807, "recall": 0.10601092896174863, "f1": 0.11117478510028653, "accuracy": 0.8539572864321608}, "sv_talbanken": {"precision": 0.026892430278884463, "recall": 0.1377551020408163, "f1": 0.045, "accuracy": 0.9065613191343181}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1012b0d7ead0a7616c4e9ed9931d60672e96c843ed3a2f820015514cfff24f86
3
+ size 972678148
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9889b896eefaf20fc908045abc2ed7d650ca0b49efbb0e4a60ac9c80c9de12b8
3
+ size 5304