--- library_name: transformers license: mit base_model: haryoaw/scenario-TCR-NER_data-univner_half tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scenario-kd-scr-ner-full-mdeberta_data-univner_half55 results: [] --- # scenario-kd-scr-ner-full-mdeberta_data-univner_half55 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset. It achieves the following results on the evaluation set: - Loss: 369.5634 - Precision: 0.3741 - Recall: 0.4149 - F1: 0.3935 - Accuracy: 0.9238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 55 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 638.1208 | 0.5828 | 500 | 570.1356 | 1.0 | 0.0004 | 0.0009 | 0.9241 | | 540.7434 | 1.1655 | 1000 | 524.2383 | 0.2886 | 0.0521 | 0.0882 | 0.9253 | | 490.1496 | 1.7483 | 1500 | 493.6944 | 0.2927 | 0.1682 | 0.2137 | 0.9297 | | 454.2343 | 2.3310 | 2000 | 471.6737 | 0.3338 | 0.2411 | 0.2800 | 0.9293 | | 429.0546 | 2.9138 | 2500 | 450.0691 | 0.4515 | 0.2450 | 0.3176 | 0.9362 | | 407.3853 | 3.4965 | 3000 | 436.8550 | 0.3570 | 0.2877 | 0.3186 | 0.9304 | | 390.9232 | 4.0793 | 3500 | 424.0557 | 0.3848 | 0.3245 | 0.3521 | 0.9313 | | 376.2085 | 4.6620 | 4000 | 417.5171 | 0.3349 | 0.3800 | 0.3561 | 0.9216 | | 364.3876 | 5.2448 | 4500 | 404.9495 | 0.3708 | 0.3766 | 0.3737 | 0.9276 | | 354.1139 | 5.8275 | 5000 | 398.9413 | 0.3534 | 0.3877 | 0.3697 | 0.9226 | | 344.7845 | 6.4103 | 5500 | 394.6783 | 0.3273 | 0.4193 | 0.3676 | 0.9143 | | 337.8201 | 6.9930 | 6000 | 382.1873 | 0.3881 | 0.3900 | 0.3891 | 0.9289 | | 330.94 | 7.5758 | 6500 | 381.2287 | 0.3480 | 0.4074 | 0.3754 | 0.9188 | | 326.2092 | 8.1585 | 7000 | 372.6259 | 0.4087 | 0.3877 | 0.3979 | 0.9306 | | 322.0348 | 8.7413 | 7500 | 374.2613 | 0.3530 | 0.4144 | 0.3812 | 0.9184 | | 319.0297 | 9.3240 | 8000 | 370.3267 | 0.3774 | 0.4131 | 0.3944 | 0.9239 | | 317.8106 | 9.9068 | 8500 | 369.5634 | 0.3741 | 0.4149 | 0.3935 | 0.9238 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1