haryoaw commited on
Commit
eb1eb6b
1 Parent(s): d8d7749

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +102 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_full
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-kd-scr-ner-full-xlmr_data-univner_full44
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-kd-scr-ner-full-xlmr_data-univner_full44
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 1.3300
25
+ - Precision: 0.4985
26
+ - Recall: 0.4665
27
+ - F1: 0.4819
28
+ - Accuracy: 0.9525
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 32
50
+ - seed: 44
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 3.061 | 0.2911 | 500 | 2.5055 | 0.3093 | 0.0105 | 0.0204 | 0.9242 |
62
+ | 2.362 | 0.5822 | 1000 | 2.2363 | 0.2161 | 0.1544 | 0.1801 | 0.9254 |
63
+ | 2.1193 | 0.8732 | 1500 | 2.0821 | 0.2713 | 0.1587 | 0.2003 | 0.9303 |
64
+ | 1.9507 | 1.1643 | 2000 | 1.9867 | 0.3366 | 0.1861 | 0.2397 | 0.9334 |
65
+ | 1.8372 | 1.4554 | 2500 | 1.9044 | 0.3094 | 0.2479 | 0.2753 | 0.9344 |
66
+ | 1.7489 | 1.7465 | 3000 | 1.8270 | 0.3812 | 0.2516 | 0.3031 | 0.9379 |
67
+ | 1.6638 | 2.0375 | 3500 | 1.7473 | 0.3617 | 0.2910 | 0.3225 | 0.9391 |
68
+ | 1.5358 | 2.3286 | 4000 | 1.7031 | 0.3968 | 0.3004 | 0.3419 | 0.9404 |
69
+ | 1.5116 | 2.6197 | 4500 | 1.6644 | 0.3930 | 0.3282 | 0.3577 | 0.9414 |
70
+ | 1.4648 | 2.9108 | 5000 | 1.6152 | 0.4069 | 0.3223 | 0.3597 | 0.9428 |
71
+ | 1.3588 | 3.2019 | 5500 | 1.5809 | 0.4327 | 0.3487 | 0.3862 | 0.9440 |
72
+ | 1.322 | 3.4929 | 6000 | 1.5435 | 0.4202 | 0.3956 | 0.4076 | 0.9435 |
73
+ | 1.2743 | 3.7840 | 6500 | 1.5010 | 0.4373 | 0.3922 | 0.4135 | 0.9463 |
74
+ | 1.2353 | 4.0751 | 7000 | 1.5160 | 0.4283 | 0.3868 | 0.4065 | 0.9458 |
75
+ | 1.1701 | 4.3662 | 7500 | 1.4797 | 0.4519 | 0.3956 | 0.4219 | 0.9470 |
76
+ | 1.1448 | 4.6573 | 8000 | 1.4640 | 0.4622 | 0.4053 | 0.4319 | 0.9473 |
77
+ | 1.1258 | 4.9483 | 8500 | 1.4496 | 0.4240 | 0.4115 | 0.4177 | 0.9466 |
78
+ | 1.0504 | 5.2394 | 9000 | 1.4419 | 0.4783 | 0.4160 | 0.4449 | 0.9486 |
79
+ | 1.0311 | 5.5305 | 9500 | 1.4270 | 0.4562 | 0.4122 | 0.4331 | 0.9479 |
80
+ | 1.0299 | 5.8216 | 10000 | 1.3948 | 0.4564 | 0.4294 | 0.4425 | 0.9497 |
81
+ | 1.0016 | 6.1126 | 10500 | 1.4108 | 0.4675 | 0.4333 | 0.4498 | 0.9495 |
82
+ | 0.9546 | 6.4037 | 11000 | 1.3817 | 0.4850 | 0.4418 | 0.4624 | 0.9508 |
83
+ | 0.9384 | 6.6948 | 11500 | 1.3723 | 0.4672 | 0.4425 | 0.4545 | 0.9508 |
84
+ | 0.9259 | 6.9859 | 12000 | 1.3574 | 0.4837 | 0.4398 | 0.4607 | 0.9508 |
85
+ | 0.8941 | 7.2770 | 12500 | 1.3871 | 0.5094 | 0.4393 | 0.4718 | 0.9514 |
86
+ | 0.8827 | 7.5680 | 13000 | 1.3698 | 0.4918 | 0.4262 | 0.4567 | 0.9514 |
87
+ | 0.8776 | 7.8591 | 13500 | 1.3510 | 0.4885 | 0.4467 | 0.4667 | 0.9517 |
88
+ | 0.8552 | 8.1502 | 14000 | 1.3549 | 0.4970 | 0.4530 | 0.4740 | 0.9519 |
89
+ | 0.8392 | 8.4413 | 14500 | 1.3413 | 0.4934 | 0.4565 | 0.4742 | 0.9521 |
90
+ | 0.8463 | 8.7324 | 15000 | 1.3523 | 0.5150 | 0.4409 | 0.4751 | 0.9521 |
91
+ | 0.8301 | 9.0234 | 15500 | 1.3371 | 0.4934 | 0.4701 | 0.4815 | 0.9521 |
92
+ | 0.8104 | 9.3145 | 16000 | 1.3385 | 0.4966 | 0.4667 | 0.4812 | 0.9527 |
93
+ | 0.807 | 9.6056 | 16500 | 1.3347 | 0.4969 | 0.4615 | 0.4786 | 0.9522 |
94
+ | 0.8125 | 9.8967 | 17000 | 1.3300 | 0.4985 | 0.4665 | 0.4819 | 0.9525 |
95
+
96
+
97
+ ### Framework versions
98
+
99
+ - Transformers 4.44.2
100
+ - Pytorch 2.1.1+cu121
101
+ - Datasets 2.14.5
102
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_full",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 6,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.43137254901960786, "recall": 0.4489795918367347, "f1": 0.43999999999999995, "accuracy": 0.9505791505791505}, "en_pud": {"precision": 0.45323741007194246, "recall": 0.3516279069767442, "f1": 0.39601885804085907, "accuracy": 0.9436626369474878}, "de_pud": {"precision": 0.16398467432950192, "recall": 0.20596727622714148, "f1": 0.1825938566552901, "accuracy": 0.8917537855702967}, "pt_pud": {"precision": 0.5004926108374385, "recall": 0.462238398544131, "f1": 0.4806054872280038, "accuracy": 0.9549280129875678}, "ru_pud": {"precision": 0.014035087719298246, "recall": 0.019305019305019305, "f1": 0.016253555465258026, "accuracy": 0.7890984241797985}, "sv_pud": {"precision": 0.5007923930269413, "recall": 0.30709426627793973, "f1": 0.3807228915662651, "accuracy": 0.9433319354162298}, "tl_trg": {"precision": 0.35294117647058826, "recall": 0.2608695652173913, "f1": 0.3, "accuracy": 0.9645776566757494}, "tl_ugnayan": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.927073837739289}, "zh_gsd": {"precision": 0.3951219512195122, "recall": 0.31681877444589307, "f1": 0.35166425470332846, "accuracy": 0.9151681651681651}, "zh_gsdsimp": {"precision": 0.40176991150442476, "recall": 0.29750982961992134, "f1": 0.34186746987951805, "accuracy": 0.9177489177489178}, "hr_set": {"precision": 0.673734610123119, "recall": 0.7020669992872416, "f1": 0.68760907504363, "accuracy": 0.9654575432811212}, "da_ddt": {"precision": 0.5538847117794486, "recall": 0.49440715883668906, "f1": 0.5224586288416077, "accuracy": 0.9668761847750175}, "en_ewt": {"precision": 0.5574324324324325, "recall": 0.45496323529411764, "f1": 0.5010121457489878, "accuracy": 0.9565685141650396}, "pt_bosque": {"precision": 0.5150316455696202, "recall": 0.5358024691358024, "f1": 0.5252117789431222, "accuracy": 0.9589552238805971}, "sr_set": {"precision": 0.7125279642058165, "recall": 0.7520661157024794, "f1": 0.7317633543940265, "accuracy": 0.9632256369845023}, "sk_snk": {"precision": 0.35655058043117743, "recall": 0.23497267759562843, "f1": 0.28326745718050067, "accuracy": 0.9133951005025126}, "sv_talbanken": {"precision": 0.6855345911949685, "recall": 0.5561224489795918, "f1": 0.6140845070422535, "accuracy": 0.9936202581341709}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f36ea409f7516dff6bf084bd887adc621fa53473ee4479f413d91b6280ab741
3
+ size 939737140
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c074ec48739625931ab213fd669faae1ed797be8f8ff6234ca1ea0459ad04ba8
3
+ size 5304