Initial Commit
Browse files- README.md +102 -0
- config.json +46 -0
- eval_result_ner.json +1 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: haryoaw/scenario-TCR-NER_data-univner_full
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: scenario-kd-scr-ner-full-xlmr_data-univner_full44
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# scenario-kd-scr-ner-full-xlmr_data-univner_full44
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 1.3300
|
25 |
+
- Precision: 0.4985
|
26 |
+
- Recall: 0.4665
|
27 |
+
- F1: 0.4819
|
28 |
+
- Accuracy: 0.9525
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 8
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 44
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 32
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 10
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
60 |
+
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
61 |
+
| 3.061 | 0.2911 | 500 | 2.5055 | 0.3093 | 0.0105 | 0.0204 | 0.9242 |
|
62 |
+
| 2.362 | 0.5822 | 1000 | 2.2363 | 0.2161 | 0.1544 | 0.1801 | 0.9254 |
|
63 |
+
| 2.1193 | 0.8732 | 1500 | 2.0821 | 0.2713 | 0.1587 | 0.2003 | 0.9303 |
|
64 |
+
| 1.9507 | 1.1643 | 2000 | 1.9867 | 0.3366 | 0.1861 | 0.2397 | 0.9334 |
|
65 |
+
| 1.8372 | 1.4554 | 2500 | 1.9044 | 0.3094 | 0.2479 | 0.2753 | 0.9344 |
|
66 |
+
| 1.7489 | 1.7465 | 3000 | 1.8270 | 0.3812 | 0.2516 | 0.3031 | 0.9379 |
|
67 |
+
| 1.6638 | 2.0375 | 3500 | 1.7473 | 0.3617 | 0.2910 | 0.3225 | 0.9391 |
|
68 |
+
| 1.5358 | 2.3286 | 4000 | 1.7031 | 0.3968 | 0.3004 | 0.3419 | 0.9404 |
|
69 |
+
| 1.5116 | 2.6197 | 4500 | 1.6644 | 0.3930 | 0.3282 | 0.3577 | 0.9414 |
|
70 |
+
| 1.4648 | 2.9108 | 5000 | 1.6152 | 0.4069 | 0.3223 | 0.3597 | 0.9428 |
|
71 |
+
| 1.3588 | 3.2019 | 5500 | 1.5809 | 0.4327 | 0.3487 | 0.3862 | 0.9440 |
|
72 |
+
| 1.322 | 3.4929 | 6000 | 1.5435 | 0.4202 | 0.3956 | 0.4076 | 0.9435 |
|
73 |
+
| 1.2743 | 3.7840 | 6500 | 1.5010 | 0.4373 | 0.3922 | 0.4135 | 0.9463 |
|
74 |
+
| 1.2353 | 4.0751 | 7000 | 1.5160 | 0.4283 | 0.3868 | 0.4065 | 0.9458 |
|
75 |
+
| 1.1701 | 4.3662 | 7500 | 1.4797 | 0.4519 | 0.3956 | 0.4219 | 0.9470 |
|
76 |
+
| 1.1448 | 4.6573 | 8000 | 1.4640 | 0.4622 | 0.4053 | 0.4319 | 0.9473 |
|
77 |
+
| 1.1258 | 4.9483 | 8500 | 1.4496 | 0.4240 | 0.4115 | 0.4177 | 0.9466 |
|
78 |
+
| 1.0504 | 5.2394 | 9000 | 1.4419 | 0.4783 | 0.4160 | 0.4449 | 0.9486 |
|
79 |
+
| 1.0311 | 5.5305 | 9500 | 1.4270 | 0.4562 | 0.4122 | 0.4331 | 0.9479 |
|
80 |
+
| 1.0299 | 5.8216 | 10000 | 1.3948 | 0.4564 | 0.4294 | 0.4425 | 0.9497 |
|
81 |
+
| 1.0016 | 6.1126 | 10500 | 1.4108 | 0.4675 | 0.4333 | 0.4498 | 0.9495 |
|
82 |
+
| 0.9546 | 6.4037 | 11000 | 1.3817 | 0.4850 | 0.4418 | 0.4624 | 0.9508 |
|
83 |
+
| 0.9384 | 6.6948 | 11500 | 1.3723 | 0.4672 | 0.4425 | 0.4545 | 0.9508 |
|
84 |
+
| 0.9259 | 6.9859 | 12000 | 1.3574 | 0.4837 | 0.4398 | 0.4607 | 0.9508 |
|
85 |
+
| 0.8941 | 7.2770 | 12500 | 1.3871 | 0.5094 | 0.4393 | 0.4718 | 0.9514 |
|
86 |
+
| 0.8827 | 7.5680 | 13000 | 1.3698 | 0.4918 | 0.4262 | 0.4567 | 0.9514 |
|
87 |
+
| 0.8776 | 7.8591 | 13500 | 1.3510 | 0.4885 | 0.4467 | 0.4667 | 0.9517 |
|
88 |
+
| 0.8552 | 8.1502 | 14000 | 1.3549 | 0.4970 | 0.4530 | 0.4740 | 0.9519 |
|
89 |
+
| 0.8392 | 8.4413 | 14500 | 1.3413 | 0.4934 | 0.4565 | 0.4742 | 0.9521 |
|
90 |
+
| 0.8463 | 8.7324 | 15000 | 1.3523 | 0.5150 | 0.4409 | 0.4751 | 0.9521 |
|
91 |
+
| 0.8301 | 9.0234 | 15500 | 1.3371 | 0.4934 | 0.4701 | 0.4815 | 0.9521 |
|
92 |
+
| 0.8104 | 9.3145 | 16000 | 1.3385 | 0.4966 | 0.4667 | 0.4812 | 0.9527 |
|
93 |
+
| 0.807 | 9.6056 | 16500 | 1.3347 | 0.4969 | 0.4615 | 0.4786 | 0.9522 |
|
94 |
+
| 0.8125 | 9.8967 | 17000 | 1.3300 | 0.4985 | 0.4665 | 0.4819 | 0.9525 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.44.2
|
100 |
+
- Pytorch 2.1.1+cu121
|
101 |
+
- Datasets 2.14.5
|
102 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_full",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForTokenClassificationKD"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4",
|
19 |
+
"5": "LABEL_5",
|
20 |
+
"6": "LABEL_6"
|
21 |
+
},
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"intermediate_size": 3072,
|
24 |
+
"label2id": {
|
25 |
+
"LABEL_0": 0,
|
26 |
+
"LABEL_1": 1,
|
27 |
+
"LABEL_2": 2,
|
28 |
+
"LABEL_3": 3,
|
29 |
+
"LABEL_4": 4,
|
30 |
+
"LABEL_5": 5,
|
31 |
+
"LABEL_6": 6
|
32 |
+
},
|
33 |
+
"layer_norm_eps": 1e-05,
|
34 |
+
"max_position_embeddings": 514,
|
35 |
+
"model_type": "xlm-roberta",
|
36 |
+
"num_attention_heads": 12,
|
37 |
+
"num_hidden_layers": 6,
|
38 |
+
"output_past": true,
|
39 |
+
"pad_token_id": 1,
|
40 |
+
"position_embedding_type": "absolute",
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.44.2",
|
43 |
+
"type_vocab_size": 1,
|
44 |
+
"use_cache": true,
|
45 |
+
"vocab_size": 250002
|
46 |
+
}
|
eval_result_ner.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ceb_gja": {"precision": 0.43137254901960786, "recall": 0.4489795918367347, "f1": 0.43999999999999995, "accuracy": 0.9505791505791505}, "en_pud": {"precision": 0.45323741007194246, "recall": 0.3516279069767442, "f1": 0.39601885804085907, "accuracy": 0.9436626369474878}, "de_pud": {"precision": 0.16398467432950192, "recall": 0.20596727622714148, "f1": 0.1825938566552901, "accuracy": 0.8917537855702967}, "pt_pud": {"precision": 0.5004926108374385, "recall": 0.462238398544131, "f1": 0.4806054872280038, "accuracy": 0.9549280129875678}, "ru_pud": {"precision": 0.014035087719298246, "recall": 0.019305019305019305, "f1": 0.016253555465258026, "accuracy": 0.7890984241797985}, "sv_pud": {"precision": 0.5007923930269413, "recall": 0.30709426627793973, "f1": 0.3807228915662651, "accuracy": 0.9433319354162298}, "tl_trg": {"precision": 0.35294117647058826, "recall": 0.2608695652173913, "f1": 0.3, "accuracy": 0.9645776566757494}, "tl_ugnayan": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.927073837739289}, "zh_gsd": {"precision": 0.3951219512195122, "recall": 0.31681877444589307, "f1": 0.35166425470332846, "accuracy": 0.9151681651681651}, "zh_gsdsimp": {"precision": 0.40176991150442476, "recall": 0.29750982961992134, "f1": 0.34186746987951805, "accuracy": 0.9177489177489178}, "hr_set": {"precision": 0.673734610123119, "recall": 0.7020669992872416, "f1": 0.68760907504363, "accuracy": 0.9654575432811212}, "da_ddt": {"precision": 0.5538847117794486, "recall": 0.49440715883668906, "f1": 0.5224586288416077, "accuracy": 0.9668761847750175}, "en_ewt": {"precision": 0.5574324324324325, "recall": 0.45496323529411764, "f1": 0.5010121457489878, "accuracy": 0.9565685141650396}, "pt_bosque": {"precision": 0.5150316455696202, "recall": 0.5358024691358024, "f1": 0.5252117789431222, "accuracy": 0.9589552238805971}, "sr_set": {"precision": 0.7125279642058165, "recall": 0.7520661157024794, "f1": 0.7317633543940265, "accuracy": 0.9632256369845023}, "sk_snk": {"precision": 0.35655058043117743, "recall": 0.23497267759562843, "f1": 0.28326745718050067, "accuracy": 0.9133951005025126}, "sv_talbanken": {"precision": 0.6855345911949685, "recall": 0.5561224489795918, "f1": 0.6140845070422535, "accuracy": 0.9936202581341709}}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f36ea409f7516dff6bf084bd887adc621fa53473ee4479f413d91b6280ab741
|
3 |
+
size 939737140
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c074ec48739625931ab213fd669faae1ed797be8f8ff6234ca1ea0459ad04ba8
|
3 |
+
size 5304
|