--- base_model: haryoaw/scenario-TCR-NER_data-univner_half library_name: transformers license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: scenario-kd-scr-ner-full-xlmr_data-univner_half44 results: [] --- # scenario-kd-scr-ner-full-xlmr_data-univner_half44 This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset. It achieves the following results on the evaluation set: - Loss: 238.5785 - Precision: 0.3821 - Recall: 0.2681 - F1: 0.3151 - Accuracy: 0.9380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 44 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 446.8617 | 0.5828 | 500 | 369.9693 | 0.0 | 0.0 | 0.0 | 0.9241 | | 345.828 | 1.1655 | 1000 | 339.4001 | 0.4474 | 0.0074 | 0.0145 | 0.9243 | | 316.4135 | 1.7483 | 1500 | 320.2157 | 0.3593 | 0.0778 | 0.1279 | 0.9271 | | 295.3783 | 2.3310 | 2000 | 303.7513 | 0.4250 | 0.0740 | 0.1261 | 0.9274 | | 278.865 | 2.9138 | 2500 | 291.9803 | 0.3462 | 0.1311 | 0.1902 | 0.9310 | | 265.0536 | 3.4965 | 3000 | 282.1734 | 0.3378 | 0.1561 | 0.2135 | 0.9319 | | 252.7824 | 4.0793 | 3500 | 274.9576 | 0.3486 | 0.2065 | 0.2593 | 0.9342 | | 243.1838 | 4.6620 | 4000 | 265.2098 | 0.3825 | 0.1775 | 0.2424 | 0.9352 | | 235.3429 | 5.2448 | 4500 | 260.4372 | 0.3720 | 0.2352 | 0.2882 | 0.9369 | | 227.8851 | 5.8275 | 5000 | 256.3334 | 0.3570 | 0.2534 | 0.2964 | 0.9365 | | 221.9237 | 6.4103 | 5500 | 250.2192 | 0.3931 | 0.2375 | 0.2961 | 0.9383 | | 217.836 | 6.9930 | 6000 | 245.7306 | 0.3999 | 0.2268 | 0.2894 | 0.9385 | | 213.3779 | 7.5758 | 6500 | 242.3217 | 0.3961 | 0.2378 | 0.2972 | 0.9391 | | 209.3609 | 8.1585 | 7000 | 241.0757 | 0.3846 | 0.2448 | 0.2992 | 0.9381 | | 207.6172 | 8.7413 | 7500 | 239.1901 | 0.3905 | 0.2535 | 0.3074 | 0.9391 | | 205.3707 | 9.3240 | 8000 | 239.5822 | 0.3728 | 0.2759 | 0.3171 | 0.9378 | | 204.5786 | 9.9068 | 8500 | 238.5785 | 0.3821 | 0.2681 | 0.3151 | 0.9380 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1