haryoaw commited on
Commit
a27ed2d
1 Parent(s): 1a749d4

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +61 -31
  2. config.json +13 -20
  3. eval_result_ner.json +1 -1
  4. model.safetensors +2 -2
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: haryoaw/scenario-TCR-NER_data-univner_half
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-kd-scr-ner-full_data-univner_full55
14
  results: []
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: nan
25
- - Precision: 0.0
26
- - Recall: 0.0
27
- - F1: 0.0
28
- - Accuracy: 0.9241
29
 
30
  ## Model description
31
 
@@ -54,29 +54,59 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
- |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:---:|:--------:|
59
- | 5.2248 | 0.5828 | 500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
60
- | 0.0 | 1.1655 | 1000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
61
- | 0.0 | 1.7483 | 1500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
62
- | 0.0 | 2.3310 | 2000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
63
- | 0.0 | 2.9138 | 2500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
64
- | 0.0 | 3.4965 | 3000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
65
- | 0.0 | 4.0793 | 3500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
66
- | 0.0 | 4.6620 | 4000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
67
- | 0.0 | 5.2448 | 4500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
68
- | 0.0 | 5.8275 | 5000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
69
- | 0.0 | 6.4103 | 5500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
70
- | 0.0 | 6.9930 | 6000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
71
- | 0.0 | 7.5758 | 6500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
72
- | 0.0 | 8.1585 | 7000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
73
- | 0.0 | 8.7413 | 7500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
74
- | 0.0 | 9.3240 | 8000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
75
- | 0.0 | 9.9068 | 8500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
76
- | 0.0 | 10.4895 | 9000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
77
- | 0.0 | 11.0723 | 9500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
78
- | 0.0 | 11.6550 | 10000 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
79
- | 0.0 | 12.2378 | 10500 | nan | 0.0 | 0.0 | 0.0 | 0.9241 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
 
82
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-kd-scr-ner-full_data-univner_full55
14
  results: []
 
21
 
22
  This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 1.6332
25
+ - Precision: 0.4469
26
+ - Recall: 0.3758
27
+ - F1: 0.4083
28
+ - Accuracy: 0.9390
29
 
30
  ## Model description
31
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 2.9172 | 0.5828 | 500 | 2.8507 | 0.2157 | 0.0452 | 0.0747 | 0.9231 |
60
+ | 2.2157 | 1.1655 | 1000 | 2.5207 | 0.2360 | 0.1134 | 0.1532 | 0.9230 |
61
+ | 1.9564 | 1.7483 | 1500 | 2.5233 | 0.1706 | 0.1749 | 0.1727 | 0.9128 |
62
+ | 1.7543 | 2.3310 | 2000 | 2.4414 | 0.2175 | 0.2244 | 0.2209 | 0.9157 |
63
+ | 1.6286 | 2.9138 | 2500 | 2.2528 | 0.2500 | 0.2336 | 0.2415 | 0.9223 |
64
+ | 1.4766 | 3.4965 | 3000 | 2.0896 | 0.2944 | 0.2241 | 0.2545 | 0.9279 |
65
+ | 1.398 | 4.0793 | 3500 | 2.0471 | 0.3335 | 0.2441 | 0.2819 | 0.9303 |
66
+ | 1.2907 | 4.6620 | 4000 | 1.9739 | 0.2985 | 0.2568 | 0.2761 | 0.9294 |
67
+ | 1.2065 | 5.2448 | 4500 | 1.8564 | 0.3685 | 0.2424 | 0.2924 | 0.9344 |
68
+ | 1.1392 | 5.8275 | 5000 | 2.1380 | 0.2515 | 0.3037 | 0.2751 | 0.9172 |
69
+ | 1.0459 | 6.4103 | 5500 | 1.9090 | 0.3426 | 0.2819 | 0.3093 | 0.9320 |
70
+ | 0.9973 | 6.9930 | 6000 | 1.8167 | 0.3556 | 0.3015 | 0.3263 | 0.9350 |
71
+ | 0.9106 | 7.5758 | 6500 | 1.8701 | 0.3736 | 0.2884 | 0.3255 | 0.9326 |
72
+ | 0.8843 | 8.1585 | 7000 | 1.8193 | 0.3618 | 0.3219 | 0.3407 | 0.9345 |
73
+ | 0.8329 | 8.7413 | 7500 | 1.8722 | 0.3634 | 0.3378 | 0.3501 | 0.9305 |
74
+ | 0.784 | 9.3240 | 8000 | 1.7434 | 0.4139 | 0.3140 | 0.3571 | 0.9381 |
75
+ | 0.7606 | 9.9068 | 8500 | 1.7787 | 0.4143 | 0.3147 | 0.3577 | 0.9363 |
76
+ | 0.7111 | 10.4895 | 9000 | 1.8461 | 0.3518 | 0.3292 | 0.3401 | 0.9315 |
77
+ | 0.6894 | 11.0723 | 9500 | 1.7537 | 0.3635 | 0.3327 | 0.3474 | 0.9351 |
78
+ | 0.6543 | 11.6550 | 10000 | 1.7565 | 0.3779 | 0.3506 | 0.3637 | 0.9347 |
79
+ | 0.6429 | 12.2378 | 10500 | 1.8134 | 0.3769 | 0.3496 | 0.3627 | 0.9323 |
80
+ | 0.6084 | 12.8205 | 11000 | 1.8020 | 0.3757 | 0.3740 | 0.3748 | 0.9320 |
81
+ | 0.5799 | 13.4033 | 11500 | 1.7080 | 0.4119 | 0.3447 | 0.3753 | 0.9374 |
82
+ | 0.5742 | 13.9860 | 12000 | 1.7454 | 0.3963 | 0.3668 | 0.3809 | 0.9356 |
83
+ | 0.5467 | 14.5688 | 12500 | 1.8019 | 0.3832 | 0.3748 | 0.3790 | 0.9322 |
84
+ | 0.5327 | 15.1515 | 13000 | 1.8784 | 0.3599 | 0.3774 | 0.3685 | 0.9275 |
85
+ | 0.5207 | 15.7343 | 13500 | 1.7905 | 0.3977 | 0.3760 | 0.3865 | 0.9336 |
86
+ | 0.5047 | 16.3170 | 14000 | 1.6909 | 0.4336 | 0.3606 | 0.3937 | 0.9377 |
87
+ | 0.4911 | 16.8998 | 14500 | 1.7464 | 0.3951 | 0.3780 | 0.3864 | 0.9342 |
88
+ | 0.4802 | 17.4825 | 15000 | 1.7247 | 0.4230 | 0.3738 | 0.3969 | 0.9365 |
89
+ | 0.4729 | 18.0653 | 15500 | 1.6929 | 0.4307 | 0.3639 | 0.3945 | 0.9379 |
90
+ | 0.4607 | 18.6480 | 16000 | 1.6395 | 0.4493 | 0.3503 | 0.3937 | 0.9404 |
91
+ | 0.449 | 19.2308 | 16500 | 1.7051 | 0.4149 | 0.3766 | 0.3948 | 0.9362 |
92
+ | 0.4402 | 19.8135 | 17000 | 1.7664 | 0.4024 | 0.3779 | 0.3898 | 0.9318 |
93
+ | 0.4337 | 20.3963 | 17500 | 1.6884 | 0.4475 | 0.3689 | 0.4044 | 0.9386 |
94
+ | 0.4272 | 20.9790 | 18000 | 1.6995 | 0.4209 | 0.3841 | 0.4017 | 0.9360 |
95
+ | 0.4162 | 21.5618 | 18500 | 1.6522 | 0.4428 | 0.3668 | 0.4012 | 0.9387 |
96
+ | 0.4114 | 22.1445 | 19000 | 1.6957 | 0.4082 | 0.3797 | 0.3935 | 0.9356 |
97
+ | 0.4087 | 22.7273 | 19500 | 1.6728 | 0.4323 | 0.3656 | 0.3962 | 0.9377 |
98
+ | 0.4008 | 23.3100 | 20000 | 1.6749 | 0.4287 | 0.3598 | 0.3913 | 0.9368 |
99
+ | 0.394 | 23.8928 | 20500 | 1.6745 | 0.4266 | 0.3640 | 0.3928 | 0.9373 |
100
+ | 0.3887 | 24.4755 | 21000 | 1.6553 | 0.4358 | 0.3666 | 0.3982 | 0.9386 |
101
+ | 0.3876 | 25.0583 | 21500 | 1.6904 | 0.4190 | 0.3841 | 0.4008 | 0.9363 |
102
+ | 0.3819 | 25.6410 | 22000 | 1.6581 | 0.4360 | 0.3761 | 0.4039 | 0.9372 |
103
+ | 0.3776 | 26.2238 | 22500 | 1.6192 | 0.4595 | 0.3620 | 0.4050 | 0.9401 |
104
+ | 0.3767 | 26.8065 | 23000 | 1.6383 | 0.4453 | 0.3796 | 0.4098 | 0.9386 |
105
+ | 0.3738 | 27.3893 | 23500 | 1.6327 | 0.4517 | 0.3745 | 0.4095 | 0.9396 |
106
+ | 0.3671 | 27.9720 | 24000 | 1.6605 | 0.4399 | 0.3763 | 0.4056 | 0.9378 |
107
+ | 0.3694 | 28.5548 | 24500 | 1.6160 | 0.4554 | 0.3744 | 0.4110 | 0.9402 |
108
+ | 0.3659 | 29.1375 | 25000 | 1.6376 | 0.4419 | 0.3734 | 0.4048 | 0.9383 |
109
+ | 0.3637 | 29.7203 | 25500 | 1.6332 | 0.4469 | 0.3758 | 0.4083 | 0.9390 |
110
 
111
 
112
  ### Framework versions
config.json CHANGED
@@ -1,9 +1,12 @@
1
  {
2
  "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
  "architectures": [
4
- "DebertaForTokenClassificationKD"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
 
 
 
7
  "hidden_act": "gelu",
8
  "hidden_dropout_prob": 0.1,
9
  "hidden_size": 768,
@@ -27,27 +30,17 @@
27
  "LABEL_5": 5,
28
  "LABEL_6": 6
29
  },
30
- "layer_norm_eps": 1e-07,
31
- "max_position_embeddings": 512,
32
- "max_relative_positions": -1,
33
- "model_type": "deberta-v2",
34
- "norm_rel_ebd": "layer_norm",
35
  "num_attention_heads": 12,
36
  "num_hidden_layers": 6,
37
- "pad_token_id": 0,
38
- "pooler_dropout": 0,
39
- "pooler_hidden_act": "gelu",
40
- "pooler_hidden_size": 768,
41
- "pos_att_type": [
42
- "p2c",
43
- "c2p"
44
- ],
45
- "position_biased_input": false,
46
- "position_buckets": 256,
47
- "relative_attention": true,
48
- "share_att_key": true,
49
  "torch_dtype": "float32",
50
  "transformers_version": "4.44.2",
51
- "type_vocab_size": 0,
52
- "vocab_size": 251000
 
53
  }
 
1
  {
2
  "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
  "architectures": [
4
+ "XLMRobertaForTokenClassificationKD"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
  "hidden_act": "gelu",
11
  "hidden_dropout_prob": 0.1,
12
  "hidden_size": 768,
 
30
  "LABEL_5": 5,
31
  "LABEL_6": 6
32
  },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
 
 
36
  "num_attention_heads": 12,
37
  "num_hidden_layers": 6,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
 
 
 
 
 
 
 
 
 
41
  "torch_dtype": "float32",
42
  "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
  }
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9606177606177606}, "en_pud": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9260955799017756}, "de_pud": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9299142093666495}, "pt_pud": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9310035459477934}, "ru_pud": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9235856367863601}, "sv_pud": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9247221639756762}, "tl_trg": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9673024523160763}, "tl_ugnayan": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9525979945305378}, "zh_gsd": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.8823676323676324}, "zh_gsdsimp": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.8828671328671329}, "hr_set": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9144270403957131}, "da_ddt": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9357477801057568}, "en_ewt": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9330995736542216}, "pt_bosque": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9222576438197363}, "sr_set": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.8929165572191577}, "sk_snk": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.8910961055276382}, "sv_talbanken": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9881729400795014}}
 
1
+ {"ceb_gja": {"precision": 0.23529411764705882, "recall": 0.16326530612244897, "f1": 0.19277108433734938, "accuracy": 0.949034749034749}, "en_pud": {"precision": 0.463768115942029, "recall": 0.32744186046511625, "f1": 0.38386041439476554, "accuracy": 0.9444654325651681}, "de_pud": {"precision": 0.11754966887417219, "recall": 0.136669874879692, "f1": 0.12639074321317312, "accuracy": 0.8763771037457222}, "pt_pud": {"precision": 0.2815126050420168, "recall": 0.12192902638762511, "f1": 0.17015873015873018, "accuracy": 0.9299782116460887}, "ru_pud": {"precision": 0.013478818998716302, "recall": 0.02027027027027027, "f1": 0.016191210485736313, "accuracy": 0.7590803409971584}, "sv_pud": {"precision": 0.18225039619651348, "recall": 0.11175898931000972, "f1": 0.13855421686746988, "accuracy": 0.9083665338645418}, "tl_trg": {"precision": 0.14285714285714285, "recall": 0.21739130434782608, "f1": 0.17241379310344826, "accuracy": 0.9277929155313351}, "tl_ugnayan": {"precision": 0.02127659574468085, "recall": 0.030303030303030304, "f1": 0.024999999999999998, "accuracy": 0.9115770282588879}, "zh_gsd": {"precision": 0.49931224209078406, "recall": 0.47327249022164275, "f1": 0.4859437751004016, "accuracy": 0.9318181818181818}, "zh_gsdsimp": {"precision": 0.5028089887640449, "recall": 0.4692005242463958, "f1": 0.48542372881355933, "accuracy": 0.9330669330669331}, "hr_set": {"precision": 0.7071376011773363, "recall": 0.68496079828938, "f1": 0.6958725561187545, "accuracy": 0.9659521846661171}, "da_ddt": {"precision": 0.23552123552123552, "recall": 0.13646532438478748, "f1": 0.17280453257790368, "accuracy": 0.9291629252718747}, "en_ewt": {"precision": 0.58675799086758, "recall": 0.4724264705882353, "f1": 0.5234215885947047, "accuracy": 0.9562895963660996}, "pt_bosque": {"precision": 0.22266401590457258, "recall": 0.09218106995884774, "f1": 0.13038416763678695, "accuracy": 0.921424431241849}, "sr_set": {"precision": 0.6893453145057766, "recall": 0.6340023612750886, "f1": 0.6605166051660517, "accuracy": 0.9507923999649768}, "sk_snk": {"precision": 0.1445966514459665, "recall": 0.10382513661202186, "f1": 0.12086513994910941, "accuracy": 0.863536432160804}, "sv_talbanken": {"precision": 0.0449438202247191, "recall": 0.10204081632653061, "f1": 0.062402496099843996, "accuracy": 0.95499828237719}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a17e1b58722cbfa169073c590fa2d17fb6cba0d515b0020d5211ca6310aad01a
3
- size 972678148
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa132e08a9fec027d8a5cd406b4b61f9a7c7085b60197f4c3143733cad47314d
3
+ size 939737140
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2263deeb5cbb0178bceaf683aab659f701a635245e2dfd1a7a4483876997f1b0
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:550f42f3870a2c3542d1cb19e145660abecf8d3290a9950c6993c122e9dadb44
3
  size 5304