haryoaw commited on
Commit
da80cef
1 Parent(s): 28a9939

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +112 -60
  2. config.json +1 -1
  3. eval_result_ner.json +1 -1
  4. model.safetensors +1 -1
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: haryoaw/scenario-TCR-NER_data-univner_half
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-kd-scr-ner-full_data-univner_full55
14
  results: []
@@ -19,13 +19,13 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  # scenario-kd-scr-ner-full_data-univner_full55
21
 
22
- This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 1.6332
25
- - Precision: 0.4469
26
- - Recall: 0.3758
27
- - F1: 0.4083
28
- - Accuracy: 0.9390
29
 
30
  ## Model description
31
 
@@ -56,57 +56,109 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 2.9172 | 0.5828 | 500 | 2.8507 | 0.2157 | 0.0452 | 0.0747 | 0.9231 |
60
- | 2.2157 | 1.1655 | 1000 | 2.5207 | 0.2360 | 0.1134 | 0.1532 | 0.9230 |
61
- | 1.9564 | 1.7483 | 1500 | 2.5233 | 0.1706 | 0.1749 | 0.1727 | 0.9128 |
62
- | 1.7543 | 2.3310 | 2000 | 2.4414 | 0.2175 | 0.2244 | 0.2209 | 0.9157 |
63
- | 1.6286 | 2.9138 | 2500 | 2.2528 | 0.2500 | 0.2336 | 0.2415 | 0.9223 |
64
- | 1.4766 | 3.4965 | 3000 | 2.0896 | 0.2944 | 0.2241 | 0.2545 | 0.9279 |
65
- | 1.398 | 4.0793 | 3500 | 2.0471 | 0.3335 | 0.2441 | 0.2819 | 0.9303 |
66
- | 1.2907 | 4.6620 | 4000 | 1.9739 | 0.2985 | 0.2568 | 0.2761 | 0.9294 |
67
- | 1.2065 | 5.2448 | 4500 | 1.8564 | 0.3685 | 0.2424 | 0.2924 | 0.9344 |
68
- | 1.1392 | 5.8275 | 5000 | 2.1380 | 0.2515 | 0.3037 | 0.2751 | 0.9172 |
69
- | 1.0459 | 6.4103 | 5500 | 1.9090 | 0.3426 | 0.2819 | 0.3093 | 0.9320 |
70
- | 0.9973 | 6.9930 | 6000 | 1.8167 | 0.3556 | 0.3015 | 0.3263 | 0.9350 |
71
- | 0.9106 | 7.5758 | 6500 | 1.8701 | 0.3736 | 0.2884 | 0.3255 | 0.9326 |
72
- | 0.8843 | 8.1585 | 7000 | 1.8193 | 0.3618 | 0.3219 | 0.3407 | 0.9345 |
73
- | 0.8329 | 8.7413 | 7500 | 1.8722 | 0.3634 | 0.3378 | 0.3501 | 0.9305 |
74
- | 0.784 | 9.3240 | 8000 | 1.7434 | 0.4139 | 0.3140 | 0.3571 | 0.9381 |
75
- | 0.7606 | 9.9068 | 8500 | 1.7787 | 0.4143 | 0.3147 | 0.3577 | 0.9363 |
76
- | 0.7111 | 10.4895 | 9000 | 1.8461 | 0.3518 | 0.3292 | 0.3401 | 0.9315 |
77
- | 0.6894 | 11.0723 | 9500 | 1.7537 | 0.3635 | 0.3327 | 0.3474 | 0.9351 |
78
- | 0.6543 | 11.6550 | 10000 | 1.7565 | 0.3779 | 0.3506 | 0.3637 | 0.9347 |
79
- | 0.6429 | 12.2378 | 10500 | 1.8134 | 0.3769 | 0.3496 | 0.3627 | 0.9323 |
80
- | 0.6084 | 12.8205 | 11000 | 1.8020 | 0.3757 | 0.3740 | 0.3748 | 0.9320 |
81
- | 0.5799 | 13.4033 | 11500 | 1.7080 | 0.4119 | 0.3447 | 0.3753 | 0.9374 |
82
- | 0.5742 | 13.9860 | 12000 | 1.7454 | 0.3963 | 0.3668 | 0.3809 | 0.9356 |
83
- | 0.5467 | 14.5688 | 12500 | 1.8019 | 0.3832 | 0.3748 | 0.3790 | 0.9322 |
84
- | 0.5327 | 15.1515 | 13000 | 1.8784 | 0.3599 | 0.3774 | 0.3685 | 0.9275 |
85
- | 0.5207 | 15.7343 | 13500 | 1.7905 | 0.3977 | 0.3760 | 0.3865 | 0.9336 |
86
- | 0.5047 | 16.3170 | 14000 | 1.6909 | 0.4336 | 0.3606 | 0.3937 | 0.9377 |
87
- | 0.4911 | 16.8998 | 14500 | 1.7464 | 0.3951 | 0.3780 | 0.3864 | 0.9342 |
88
- | 0.4802 | 17.4825 | 15000 | 1.7247 | 0.4230 | 0.3738 | 0.3969 | 0.9365 |
89
- | 0.4729 | 18.0653 | 15500 | 1.6929 | 0.4307 | 0.3639 | 0.3945 | 0.9379 |
90
- | 0.4607 | 18.6480 | 16000 | 1.6395 | 0.4493 | 0.3503 | 0.3937 | 0.9404 |
91
- | 0.449 | 19.2308 | 16500 | 1.7051 | 0.4149 | 0.3766 | 0.3948 | 0.9362 |
92
- | 0.4402 | 19.8135 | 17000 | 1.7664 | 0.4024 | 0.3779 | 0.3898 | 0.9318 |
93
- | 0.4337 | 20.3963 | 17500 | 1.6884 | 0.4475 | 0.3689 | 0.4044 | 0.9386 |
94
- | 0.4272 | 20.9790 | 18000 | 1.6995 | 0.4209 | 0.3841 | 0.4017 | 0.9360 |
95
- | 0.4162 | 21.5618 | 18500 | 1.6522 | 0.4428 | 0.3668 | 0.4012 | 0.9387 |
96
- | 0.4114 | 22.1445 | 19000 | 1.6957 | 0.4082 | 0.3797 | 0.3935 | 0.9356 |
97
- | 0.4087 | 22.7273 | 19500 | 1.6728 | 0.4323 | 0.3656 | 0.3962 | 0.9377 |
98
- | 0.4008 | 23.3100 | 20000 | 1.6749 | 0.4287 | 0.3598 | 0.3913 | 0.9368 |
99
- | 0.394 | 23.8928 | 20500 | 1.6745 | 0.4266 | 0.3640 | 0.3928 | 0.9373 |
100
- | 0.3887 | 24.4755 | 21000 | 1.6553 | 0.4358 | 0.3666 | 0.3982 | 0.9386 |
101
- | 0.3876 | 25.0583 | 21500 | 1.6904 | 0.4190 | 0.3841 | 0.4008 | 0.9363 |
102
- | 0.3819 | 25.6410 | 22000 | 1.6581 | 0.4360 | 0.3761 | 0.4039 | 0.9372 |
103
- | 0.3776 | 26.2238 | 22500 | 1.6192 | 0.4595 | 0.3620 | 0.4050 | 0.9401 |
104
- | 0.3767 | 26.8065 | 23000 | 1.6383 | 0.4453 | 0.3796 | 0.4098 | 0.9386 |
105
- | 0.3738 | 27.3893 | 23500 | 1.6327 | 0.4517 | 0.3745 | 0.4095 | 0.9396 |
106
- | 0.3671 | 27.9720 | 24000 | 1.6605 | 0.4399 | 0.3763 | 0.4056 | 0.9378 |
107
- | 0.3694 | 28.5548 | 24500 | 1.6160 | 0.4554 | 0.3744 | 0.4110 | 0.9402 |
108
- | 0.3659 | 29.1375 | 25000 | 1.6376 | 0.4419 | 0.3734 | 0.4048 | 0.9383 |
109
- | 0.3637 | 29.7203 | 25500 | 1.6332 | 0.4469 | 0.3758 | 0.4083 | 0.9390 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
 
112
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_full
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-kd-scr-ner-full_data-univner_full55
14
  results: []
 
19
 
20
  # scenario-kd-scr-ner-full_data-univner_full55
21
 
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 1.1087
25
+ - Precision: 0.6202
26
+ - Recall: 0.5509
27
+ - F1: 0.5835
28
+ - Accuracy: 0.9594
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 2.7888 | 0.2910 | 500 | 2.4429 | 0.2941 | 0.0087 | 0.0168 | 0.9242 |
60
+ | 2.1116 | 0.5821 | 1000 | 2.1355 | 0.2870 | 0.1215 | 0.1707 | 0.9277 |
61
+ | 1.9109 | 0.8731 | 1500 | 2.0239 | 0.2850 | 0.1580 | 0.2033 | 0.9306 |
62
+ | 1.771 | 1.1641 | 2000 | 1.9268 | 0.4072 | 0.1535 | 0.2230 | 0.9319 |
63
+ | 1.633 | 1.4552 | 2500 | 1.8866 | 0.2862 | 0.2658 | 0.2756 | 0.9336 |
64
+ | 1.5872 | 1.7462 | 3000 | 1.7527 | 0.3273 | 0.2818 | 0.3028 | 0.9372 |
65
+ | 1.4833 | 2.0373 | 3500 | 1.7643 | 0.3558 | 0.2464 | 0.2912 | 0.9377 |
66
+ | 1.3965 | 2.3283 | 4000 | 1.6664 | 0.3675 | 0.3353 | 0.3507 | 0.9394 |
67
+ | 1.3237 | 2.6193 | 4500 | 1.6537 | 0.3445 | 0.3481 | 0.3463 | 0.9376 |
68
+ | 1.2791 | 2.9104 | 5000 | 1.5552 | 0.3960 | 0.3758 | 0.3857 | 0.9431 |
69
+ | 1.2023 | 3.2014 | 5500 | 1.5571 | 0.4338 | 0.3855 | 0.4083 | 0.9442 |
70
+ | 1.1456 | 3.4924 | 6000 | 1.4999 | 0.4258 | 0.3998 | 0.4124 | 0.9457 |
71
+ | 1.1315 | 3.7835 | 6500 | 1.4824 | 0.4244 | 0.3741 | 0.3977 | 0.9458 |
72
+ | 1.0693 | 4.0745 | 7000 | 1.4836 | 0.4407 | 0.3842 | 0.4105 | 0.9461 |
73
+ | 1.0052 | 4.3655 | 7500 | 1.4413 | 0.4322 | 0.4275 | 0.4298 | 0.9472 |
74
+ | 0.9737 | 4.6566 | 8000 | 1.4101 | 0.4634 | 0.4161 | 0.4385 | 0.9491 |
75
+ | 0.9521 | 4.9476 | 8500 | 1.3865 | 0.4476 | 0.4214 | 0.4341 | 0.9491 |
76
+ | 0.8818 | 5.2386 | 9000 | 1.4115 | 0.4612 | 0.4232 | 0.4414 | 0.9494 |
77
+ | 0.8396 | 5.5297 | 9500 | 1.3702 | 0.4645 | 0.4470 | 0.4556 | 0.9501 |
78
+ | 0.8456 | 5.8207 | 10000 | 1.3441 | 0.5076 | 0.4252 | 0.4627 | 0.9508 |
79
+ | 0.829 | 6.1118 | 10500 | 1.3357 | 0.4922 | 0.4718 | 0.4818 | 0.9518 |
80
+ | 0.7611 | 6.4028 | 11000 | 1.3320 | 0.5100 | 0.4548 | 0.4808 | 0.9522 |
81
+ | 0.7475 | 6.6938 | 11500 | 1.3570 | 0.4852 | 0.4953 | 0.4902 | 0.9531 |
82
+ | 0.7362 | 6.9849 | 12000 | 1.3154 | 0.5039 | 0.4929 | 0.4983 | 0.9529 |
83
+ | 0.6776 | 7.2759 | 12500 | 1.3044 | 0.5099 | 0.4884 | 0.4989 | 0.9534 |
84
+ | 0.6701 | 7.5669 | 13000 | 1.2921 | 0.5229 | 0.4675 | 0.4936 | 0.9541 |
85
+ | 0.6586 | 7.8580 | 13500 | 1.2670 | 0.5185 | 0.5067 | 0.5126 | 0.9548 |
86
+ | 0.6284 | 8.1490 | 14000 | 1.2752 | 0.5346 | 0.4979 | 0.5156 | 0.9548 |
87
+ | 0.6025 | 8.4400 | 14500 | 1.2738 | 0.5270 | 0.4884 | 0.5070 | 0.9545 |
88
+ | 0.5955 | 8.7311 | 15000 | 1.2564 | 0.5340 | 0.4895 | 0.5108 | 0.9552 |
89
+ | 0.5784 | 9.0221 | 15500 | 1.2502 | 0.5406 | 0.5035 | 0.5214 | 0.9546 |
90
+ | 0.5479 | 9.3132 | 16000 | 1.2339 | 0.5418 | 0.5203 | 0.5308 | 0.9566 |
91
+ | 0.54 | 9.6042 | 16500 | 1.2380 | 0.5473 | 0.5175 | 0.5320 | 0.9564 |
92
+ | 0.5368 | 9.8952 | 17000 | 1.2403 | 0.5726 | 0.5044 | 0.5363 | 0.9568 |
93
+ | 0.5151 | 10.1863 | 17500 | 1.2152 | 0.5516 | 0.5445 | 0.5480 | 0.9571 |
94
+ | 0.4959 | 10.4773 | 18000 | 1.2323 | 0.5657 | 0.5359 | 0.5504 | 0.9570 |
95
+ | 0.4946 | 10.7683 | 18500 | 1.2150 | 0.5679 | 0.5236 | 0.5449 | 0.9575 |
96
+ | 0.499 | 11.0594 | 19000 | 1.2119 | 0.5637 | 0.5372 | 0.5501 | 0.9576 |
97
+ | 0.462 | 11.3504 | 19500 | 1.2289 | 0.5736 | 0.5294 | 0.5506 | 0.9578 |
98
+ | 0.4631 | 11.6414 | 20000 | 1.2106 | 0.5661 | 0.5435 | 0.5546 | 0.9576 |
99
+ | 0.464 | 11.9325 | 20500 | 1.2292 | 0.5886 | 0.5087 | 0.5458 | 0.9576 |
100
+ | 0.4463 | 12.2235 | 21000 | 1.2135 | 0.5823 | 0.5465 | 0.5639 | 0.9578 |
101
+ | 0.4339 | 12.5146 | 21500 | 1.2098 | 0.5890 | 0.5208 | 0.5528 | 0.9578 |
102
+ | 0.4386 | 12.8056 | 22000 | 1.1906 | 0.5754 | 0.5387 | 0.5565 | 0.9573 |
103
+ | 0.4249 | 13.0966 | 22500 | 1.1972 | 0.5873 | 0.5379 | 0.5615 | 0.9580 |
104
+ | 0.4076 | 13.3877 | 23000 | 1.1994 | 0.5680 | 0.5585 | 0.5632 | 0.9576 |
105
+ | 0.4122 | 13.6787 | 23500 | 1.2129 | 0.5894 | 0.5331 | 0.5598 | 0.9580 |
106
+ | 0.4156 | 13.9697 | 24000 | 1.1865 | 0.5779 | 0.5485 | 0.5628 | 0.9580 |
107
+ | 0.3926 | 14.2608 | 24500 | 1.1828 | 0.5974 | 0.5397 | 0.5671 | 0.9589 |
108
+ | 0.3966 | 14.5518 | 25000 | 1.1764 | 0.5959 | 0.5390 | 0.5660 | 0.9586 |
109
+ | 0.3861 | 14.8428 | 25500 | 1.1769 | 0.5869 | 0.5307 | 0.5574 | 0.9581 |
110
+ | 0.3847 | 15.1339 | 26000 | 1.1997 | 0.5829 | 0.5406 | 0.5610 | 0.9581 |
111
+ | 0.3703 | 15.4249 | 26500 | 1.1809 | 0.5736 | 0.5543 | 0.5638 | 0.9582 |
112
+ | 0.3747 | 15.7159 | 27000 | 1.1896 | 0.5871 | 0.5320 | 0.5582 | 0.9577 |
113
+ | 0.3713 | 16.0070 | 27500 | 1.1700 | 0.5965 | 0.5422 | 0.5681 | 0.9589 |
114
+ | 0.3558 | 16.2980 | 28000 | 1.1922 | 0.5970 | 0.5416 | 0.5680 | 0.9586 |
115
+ | 0.3582 | 16.5891 | 28500 | 1.1507 | 0.5831 | 0.5470 | 0.5644 | 0.9586 |
116
+ | 0.3571 | 16.8801 | 29000 | 1.1405 | 0.5899 | 0.5418 | 0.5648 | 0.9584 |
117
+ | 0.3522 | 17.1711 | 29500 | 1.1610 | 0.6046 | 0.5517 | 0.5769 | 0.9588 |
118
+ | 0.3414 | 17.4622 | 30000 | 1.1670 | 0.6042 | 0.5485 | 0.5750 | 0.9590 |
119
+ | 0.3488 | 17.7532 | 30500 | 1.1502 | 0.5904 | 0.5624 | 0.5761 | 0.9586 |
120
+ | 0.34 | 18.0442 | 31000 | 1.1595 | 0.6091 | 0.5304 | 0.5670 | 0.9585 |
121
+ | 0.3336 | 18.3353 | 31500 | 1.1553 | 0.6025 | 0.5439 | 0.5717 | 0.9589 |
122
+ | 0.3295 | 18.6263 | 32000 | 1.1683 | 0.5916 | 0.5337 | 0.5611 | 0.9580 |
123
+ | 0.3345 | 18.9173 | 32500 | 1.1478 | 0.5825 | 0.5536 | 0.5677 | 0.9585 |
124
+ | 0.3263 | 19.2084 | 33000 | 1.1415 | 0.6093 | 0.5369 | 0.5708 | 0.9589 |
125
+ | 0.3206 | 19.4994 | 33500 | 1.1410 | 0.5888 | 0.5637 | 0.5760 | 0.9593 |
126
+ | 0.3234 | 19.7905 | 34000 | 1.1371 | 0.6072 | 0.5490 | 0.5766 | 0.9591 |
127
+ | 0.3212 | 20.0815 | 34500 | 1.1401 | 0.6006 | 0.5478 | 0.5730 | 0.9587 |
128
+ | 0.3154 | 20.3725 | 35000 | 1.1505 | 0.6165 | 0.5400 | 0.5758 | 0.9591 |
129
+ | 0.3081 | 20.6636 | 35500 | 1.1512 | 0.5977 | 0.5393 | 0.5670 | 0.9591 |
130
+ | 0.3137 | 20.9546 | 36000 | 1.1477 | 0.6185 | 0.5357 | 0.5741 | 0.9590 |
131
+ | 0.3048 | 21.2456 | 36500 | 1.1344 | 0.6070 | 0.5416 | 0.5724 | 0.9593 |
132
+ | 0.3028 | 21.5367 | 37000 | 1.1308 | 0.6192 | 0.5481 | 0.5815 | 0.9594 |
133
+ | 0.3039 | 21.8277 | 37500 | 1.1492 | 0.6167 | 0.5318 | 0.5711 | 0.9591 |
134
+ | 0.3013 | 22.1187 | 38000 | 1.1340 | 0.6139 | 0.5393 | 0.5742 | 0.9592 |
135
+ | 0.2966 | 22.4098 | 38500 | 1.1176 | 0.6073 | 0.5561 | 0.5806 | 0.9594 |
136
+ | 0.2956 | 22.7008 | 39000 | 1.1156 | 0.6100 | 0.5627 | 0.5854 | 0.9593 |
137
+ | 0.2982 | 22.9919 | 39500 | 1.1282 | 0.6162 | 0.5553 | 0.5842 | 0.9596 |
138
+ | 0.2915 | 23.2829 | 40000 | 1.1359 | 0.6048 | 0.5510 | 0.5766 | 0.9593 |
139
+ | 0.2882 | 23.5739 | 40500 | 1.1194 | 0.6075 | 0.5517 | 0.5783 | 0.9592 |
140
+ | 0.2906 | 23.8650 | 41000 | 1.1256 | 0.6058 | 0.5442 | 0.5734 | 0.9590 |
141
+ | 0.2852 | 24.1560 | 41500 | 1.1115 | 0.6143 | 0.5465 | 0.5785 | 0.9596 |
142
+ | 0.2864 | 24.4470 | 42000 | 1.1214 | 0.6103 | 0.5441 | 0.5753 | 0.9594 |
143
+ | 0.2829 | 24.7381 | 42500 | 1.1333 | 0.6267 | 0.5346 | 0.5770 | 0.9592 |
144
+ | 0.2836 | 25.0291 | 43000 | 1.1195 | 0.6067 | 0.5550 | 0.5797 | 0.9591 |
145
+ | 0.2795 | 25.3201 | 43500 | 1.1260 | 0.6332 | 0.5315 | 0.5779 | 0.9593 |
146
+ | 0.2779 | 25.6112 | 44000 | 1.1119 | 0.6164 | 0.5457 | 0.5789 | 0.9597 |
147
+ | 0.2787 | 25.9022 | 44500 | 1.1094 | 0.6103 | 0.5640 | 0.5862 | 0.9600 |
148
+ | 0.2765 | 26.1932 | 45000 | 1.1104 | 0.6166 | 0.5474 | 0.5799 | 0.9596 |
149
+ | 0.2743 | 26.4843 | 45500 | 1.1164 | 0.6172 | 0.5553 | 0.5846 | 0.9596 |
150
+ | 0.2731 | 26.7753 | 46000 | 1.1246 | 0.6158 | 0.5578 | 0.5854 | 0.9594 |
151
+ | 0.2705 | 27.0664 | 46500 | 1.1110 | 0.6153 | 0.5468 | 0.5790 | 0.9593 |
152
+ | 0.2707 | 27.3574 | 47000 | 1.1101 | 0.6207 | 0.5586 | 0.5880 | 0.9602 |
153
+ | 0.2713 | 27.6484 | 47500 | 1.1131 | 0.6203 | 0.5455 | 0.5805 | 0.9596 |
154
+ | 0.2704 | 27.9395 | 48000 | 1.1122 | 0.6193 | 0.5494 | 0.5823 | 0.9596 |
155
+ | 0.2669 | 28.2305 | 48500 | 1.1127 | 0.6139 | 0.5519 | 0.5812 | 0.9596 |
156
+ | 0.2696 | 28.5215 | 49000 | 1.1148 | 0.6233 | 0.5449 | 0.5815 | 0.9597 |
157
+ | 0.2658 | 28.8126 | 49500 | 1.1130 | 0.6182 | 0.5451 | 0.5794 | 0.9597 |
158
+ | 0.2663 | 29.1036 | 50000 | 1.1070 | 0.6170 | 0.5475 | 0.5802 | 0.9593 |
159
+ | 0.2625 | 29.3946 | 50500 | 1.1055 | 0.6172 | 0.5498 | 0.5816 | 0.9599 |
160
+ | 0.2652 | 29.6857 | 51000 | 1.1010 | 0.6332 | 0.5516 | 0.5896 | 0.9603 |
161
+ | 0.2662 | 29.9767 | 51500 | 1.1087 | 0.6202 | 0.5509 | 0.5835 | 0.9594 |
162
 
163
 
164
  ### Framework versions
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
  "architectures": [
4
  "XLMRobertaForTokenClassificationKD"
5
  ],
 
1
  {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_full",
3
  "architectures": [
4
  "XLMRobertaForTokenClassificationKD"
5
  ],
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.23529411764705882, "recall": 0.16326530612244897, "f1": 0.19277108433734938, "accuracy": 0.949034749034749}, "en_pud": {"precision": 0.463768115942029, "recall": 0.32744186046511625, "f1": 0.38386041439476554, "accuracy": 0.9444654325651681}, "de_pud": {"precision": 0.11754966887417219, "recall": 0.136669874879692, "f1": 0.12639074321317312, "accuracy": 0.8763771037457222}, "pt_pud": {"precision": 0.2815126050420168, "recall": 0.12192902638762511, "f1": 0.17015873015873018, "accuracy": 0.9299782116460887}, "ru_pud": {"precision": 0.013478818998716302, "recall": 0.02027027027027027, "f1": 0.016191210485736313, "accuracy": 0.7590803409971584}, "sv_pud": {"precision": 0.18225039619651348, "recall": 0.11175898931000972, "f1": 0.13855421686746988, "accuracy": 0.9083665338645418}, "tl_trg": {"precision": 0.14285714285714285, "recall": 0.21739130434782608, "f1": 0.17241379310344826, "accuracy": 0.9277929155313351}, "tl_ugnayan": {"precision": 0.02127659574468085, "recall": 0.030303030303030304, "f1": 0.024999999999999998, "accuracy": 0.9115770282588879}, "zh_gsd": {"precision": 0.49931224209078406, "recall": 0.47327249022164275, "f1": 0.4859437751004016, "accuracy": 0.9318181818181818}, "zh_gsdsimp": {"precision": 0.5028089887640449, "recall": 0.4692005242463958, "f1": 0.48542372881355933, "accuracy": 0.9330669330669331}, "hr_set": {"precision": 0.7071376011773363, "recall": 0.68496079828938, "f1": 0.6958725561187545, "accuracy": 0.9659521846661171}, "da_ddt": {"precision": 0.23552123552123552, "recall": 0.13646532438478748, "f1": 0.17280453257790368, "accuracy": 0.9291629252718747}, "en_ewt": {"precision": 0.58675799086758, "recall": 0.4724264705882353, "f1": 0.5234215885947047, "accuracy": 0.9562895963660996}, "pt_bosque": {"precision": 0.22266401590457258, "recall": 0.09218106995884774, "f1": 0.13038416763678695, "accuracy": 0.921424431241849}, "sr_set": {"precision": 0.6893453145057766, "recall": 0.6340023612750886, "f1": 0.6605166051660517, "accuracy": 0.9507923999649768}, "sk_snk": {"precision": 0.1445966514459665, "recall": 0.10382513661202186, "f1": 0.12086513994910941, "accuracy": 0.863536432160804}, "sv_talbanken": {"precision": 0.0449438202247191, "recall": 0.10204081632653061, "f1": 0.062402496099843996, "accuracy": 0.95499828237719}}
 
1
+ {"ceb_gja": {"precision": 0.5490196078431373, "recall": 0.5714285714285714, "f1": 0.5599999999999999, "accuracy": 0.9637065637065637}, "en_pud": {"precision": 0.5394736842105263, "recall": 0.3813953488372093, "f1": 0.446866485013624, "accuracy": 0.9480544012089157}, "de_pud": {"precision": 0.21278825995807127, "recall": 0.19538017324350337, "f1": 0.2037129954841947, "accuracy": 0.9054427828043692}, "pt_pud": {"precision": 0.5997818974918212, "recall": 0.5004549590536852, "f1": 0.5456349206349207, "accuracy": 0.9587302943563891}, "ru_pud": {"precision": 0.037037037037037035, "recall": 0.011583011583011582, "f1": 0.01764705882352941, "accuracy": 0.8990958408679928}, "sv_pud": {"precision": 0.5989304812834224, "recall": 0.32653061224489793, "f1": 0.4226415094339623, "accuracy": 0.9466345145732858}, "tl_trg": {"precision": 0.5, "recall": 0.5217391304347826, "f1": 0.5106382978723404, "accuracy": 0.9700272479564033}, "tl_ugnayan": {"precision": 0.08333333333333333, "recall": 0.06060606060606061, "f1": 0.07017543859649122, "accuracy": 0.9471285323609845}, "zh_gsd": {"precision": 0.5624123422159888, "recall": 0.5228161668839635, "f1": 0.5418918918918918, "accuracy": 0.9383949383949384}, "zh_gsdsimp": {"precision": 0.5539772727272727, "recall": 0.5111402359108781, "f1": 0.5316973415132925, "accuracy": 0.9368964368964369}, "hr_set": {"precision": 0.7628865979381443, "recall": 0.7384176764076978, "f1": 0.7504527345164794, "accuracy": 0.9711046990931574}, "da_ddt": {"precision": 0.6574585635359116, "recall": 0.5324384787472036, "f1": 0.588380716934487, "accuracy": 0.9711663174698194}, "en_ewt": {"precision": 0.6628787878787878, "recall": 0.48253676470588236, "f1": 0.5585106382978723, "accuracy": 0.9603538271506554}, "pt_bosque": {"precision": 0.6170774647887324, "recall": 0.5769547325102881, "f1": 0.5963419821352616, "accuracy": 0.9644978988552384}, "sr_set": {"precision": 0.8199753390875463, "recall": 0.7851239669421488, "f1": 0.802171290711701, "accuracy": 0.9699676035373435}, "sk_snk": {"precision": 0.42857142857142855, "recall": 0.2459016393442623, "f1": 0.3125, "accuracy": 0.915358040201005}, "sv_talbanken": {"precision": 0.7730061349693251, "recall": 0.6428571428571429, "f1": 0.701949860724234, "accuracy": 0.9945526819453305}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aa132e08a9fec027d8a5cd406b4b61f9a7c7085b60197f4c3143733cad47314d
3
  size 939737140
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1e068ce2a9d3256455ba93d8c9f0aaf7602e56d690f67dfac65fc45ce9af55b
3
  size 939737140
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:550f42f3870a2c3542d1cb19e145660abecf8d3290a9950c6993c122e9dadb44
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:251b7d8b74b4c08d44b8abdc3bd3f4e499caa1b3a6b4c04561c2ee812befd4bb
3
  size 5304