haryoaw commited on
Commit
d77eaa5
1 Parent(s): bbd04df

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +59 -59
  2. config.json +2 -2
  3. eval_result_ner.json +1 -1
  4. model.safetensors +2 -2
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: haryoaw/scenario-TCR-NER_data-univner_half
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-non-kd-po-ner-full-mdeberta_data-univner_half44
14
  results: []
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.1473
25
- - Precision: 0.8609
26
- - Recall: 0.8706
27
- - F1: 0.8657
28
- - Accuracy: 0.9852
29
 
30
  ## Model description
31
 
@@ -56,57 +56,57 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.0061 | 0.5828 | 500 | 0.0903 | 0.8587 | 0.8507 | 0.8547 | 0.9842 |
60
- | 0.0071 | 1.1655 | 1000 | 0.1028 | 0.8407 | 0.8732 | 0.8566 | 0.9845 |
61
- | 0.0061 | 1.7483 | 1500 | 0.0990 | 0.8455 | 0.8495 | 0.8475 | 0.9833 |
62
- | 0.0055 | 2.3310 | 2000 | 0.1022 | 0.8571 | 0.8517 | 0.8544 | 0.9842 |
63
- | 0.0047 | 2.9138 | 2500 | 0.0968 | 0.8396 | 0.8668 | 0.8530 | 0.9840 |
64
- | 0.0037 | 3.4965 | 3000 | 0.1138 | 0.8275 | 0.8707 | 0.8486 | 0.9832 |
65
- | 0.0035 | 4.0793 | 3500 | 0.1145 | 0.8490 | 0.8588 | 0.8538 | 0.9837 |
66
- | 0.0036 | 4.6620 | 4000 | 0.1066 | 0.8388 | 0.8687 | 0.8535 | 0.9840 |
67
- | 0.0032 | 5.2448 | 4500 | 0.1206 | 0.8495 | 0.8575 | 0.8535 | 0.9840 |
68
- | 0.0032 | 5.8275 | 5000 | 0.1192 | 0.8502 | 0.8564 | 0.8533 | 0.9840 |
69
- | 0.0027 | 6.4103 | 5500 | 0.1153 | 0.8463 | 0.8683 | 0.8571 | 0.9844 |
70
- | 0.0033 | 6.9930 | 6000 | 0.1199 | 0.8437 | 0.8722 | 0.8577 | 0.9843 |
71
- | 0.003 | 7.5758 | 6500 | 0.1121 | 0.8533 | 0.8525 | 0.8529 | 0.9843 |
72
- | 0.0023 | 8.1585 | 7000 | 0.1152 | 0.8508 | 0.8435 | 0.8471 | 0.9831 |
73
- | 0.0028 | 8.7413 | 7500 | 0.1131 | 0.8368 | 0.8536 | 0.8451 | 0.9835 |
74
- | 0.0026 | 9.3240 | 8000 | 0.1213 | 0.8415 | 0.8670 | 0.8540 | 0.9834 |
75
- | 0.0021 | 9.9068 | 8500 | 0.1207 | 0.8313 | 0.8716 | 0.8510 | 0.9833 |
76
- | 0.0015 | 10.4895 | 9000 | 0.1268 | 0.8566 | 0.8609 | 0.8587 | 0.9844 |
77
- | 0.0016 | 11.0723 | 9500 | 0.1223 | 0.8525 | 0.8528 | 0.8527 | 0.9839 |
78
- | 0.0021 | 11.6550 | 10000 | 0.1262 | 0.8402 | 0.8602 | 0.8501 | 0.9834 |
79
- | 0.0012 | 12.2378 | 10500 | 0.1237 | 0.8575 | 0.8453 | 0.8514 | 0.9837 |
80
- | 0.0014 | 12.8205 | 11000 | 0.1319 | 0.8537 | 0.8551 | 0.8544 | 0.9840 |
81
- | 0.0013 | 13.4033 | 11500 | 0.1308 | 0.8316 | 0.8619 | 0.8465 | 0.9830 |
82
- | 0.0014 | 13.9860 | 12000 | 0.1237 | 0.8615 | 0.8536 | 0.8575 | 0.9843 |
83
- | 0.0008 | 14.5688 | 12500 | 0.1361 | 0.8436 | 0.8638 | 0.8536 | 0.9839 |
84
- | 0.0013 | 15.1515 | 13000 | 0.1383 | 0.8466 | 0.8576 | 0.8521 | 0.9839 |
85
- | 0.0011 | 15.7343 | 13500 | 0.1356 | 0.8595 | 0.8527 | 0.8561 | 0.9843 |
86
- | 0.0007 | 16.3170 | 14000 | 0.1366 | 0.8533 | 0.8618 | 0.8575 | 0.9843 |
87
- | 0.0008 | 16.8998 | 14500 | 0.1334 | 0.8608 | 0.8625 | 0.8616 | 0.9846 |
88
- | 0.0007 | 17.4825 | 15000 | 0.1382 | 0.8549 | 0.8644 | 0.8596 | 0.9847 |
89
- | 0.0007 | 18.0653 | 15500 | 0.1432 | 0.8682 | 0.8488 | 0.8584 | 0.9845 |
90
- | 0.0006 | 18.6480 | 16000 | 0.1408 | 0.8551 | 0.8613 | 0.8582 | 0.9844 |
91
- | 0.0009 | 19.2308 | 16500 | 0.1366 | 0.8551 | 0.8567 | 0.8559 | 0.9844 |
92
- | 0.0007 | 19.8135 | 17000 | 0.1320 | 0.8518 | 0.8641 | 0.8579 | 0.9845 |
93
- | 0.0005 | 20.3963 | 17500 | 0.1399 | 0.8506 | 0.8655 | 0.8580 | 0.9844 |
94
- | 0.0005 | 20.9790 | 18000 | 0.1399 | 0.8510 | 0.8631 | 0.8570 | 0.9845 |
95
- | 0.0005 | 21.5618 | 18500 | 0.1430 | 0.8633 | 0.8622 | 0.8628 | 0.9849 |
96
- | 0.0005 | 22.1445 | 19000 | 0.1368 | 0.8549 | 0.8673 | 0.8611 | 0.9848 |
97
- | 0.0004 | 22.7273 | 19500 | 0.1364 | 0.8548 | 0.8678 | 0.8613 | 0.9848 |
98
- | 0.0005 | 23.3100 | 20000 | 0.1400 | 0.8616 | 0.8650 | 0.8633 | 0.9848 |
99
- | 0.0003 | 23.8928 | 20500 | 0.1452 | 0.8458 | 0.8723 | 0.8589 | 0.9843 |
100
- | 0.0002 | 24.4755 | 21000 | 0.1398 | 0.8552 | 0.8665 | 0.8608 | 0.9849 |
101
- | 0.0003 | 25.0583 | 21500 | 0.1405 | 0.8578 | 0.8710 | 0.8643 | 0.9849 |
102
- | 0.0002 | 25.6410 | 22000 | 0.1408 | 0.8601 | 0.8691 | 0.8646 | 0.9851 |
103
- | 0.0002 | 26.2238 | 22500 | 0.1453 | 0.8578 | 0.8730 | 0.8654 | 0.9852 |
104
- | 0.0002 | 26.8065 | 23000 | 0.1463 | 0.8574 | 0.8736 | 0.8654 | 0.9851 |
105
- | 0.0002 | 27.3893 | 23500 | 0.1458 | 0.8637 | 0.8714 | 0.8676 | 0.9854 |
106
- | 0.0001 | 27.9720 | 24000 | 0.1465 | 0.8565 | 0.8732 | 0.8648 | 0.9851 |
107
- | 0.0001 | 28.5548 | 24500 | 0.1464 | 0.8602 | 0.8727 | 0.8664 | 0.9852 |
108
- | 0.0002 | 29.1375 | 25000 | 0.1474 | 0.8598 | 0.8714 | 0.8656 | 0.9852 |
109
- | 0.0001 | 29.7203 | 25500 | 0.1473 | 0.8609 | 0.8706 | 0.8657 | 0.9852 |
110
 
111
 
112
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-non-kd-po-ner-full-mdeberta_data-univner_half44
14
  results: []
 
21
 
22
  This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.1899
25
+ - Precision: 0.7789
26
+ - Recall: 0.7960
27
+ - F1: 0.7874
28
+ - Accuracy: 0.9782
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.2534 | 0.5828 | 500 | 0.1393 | 0.4829 | 0.5549 | 0.5164 | 0.9528 |
60
+ | 0.1074 | 1.1655 | 1000 | 0.1049 | 0.6398 | 0.6839 | 0.6611 | 0.9677 |
61
+ | 0.0707 | 1.7483 | 1500 | 0.0936 | 0.6774 | 0.7715 | 0.7214 | 0.9724 |
62
+ | 0.0495 | 2.3310 | 2000 | 0.0966 | 0.6839 | 0.7790 | 0.7284 | 0.9722 |
63
+ | 0.0393 | 2.9138 | 2500 | 0.0951 | 0.7067 | 0.7681 | 0.7361 | 0.9731 |
64
+ | 0.0289 | 3.4965 | 3000 | 0.0962 | 0.7249 | 0.7863 | 0.7544 | 0.9751 |
65
+ | 0.023 | 4.0793 | 3500 | 0.1101 | 0.7418 | 0.7791 | 0.7600 | 0.9764 |
66
+ | 0.0176 | 4.6620 | 4000 | 0.1141 | 0.7400 | 0.7748 | 0.7570 | 0.9755 |
67
+ | 0.0157 | 5.2448 | 4500 | 0.1200 | 0.7452 | 0.7973 | 0.7704 | 0.9761 |
68
+ | 0.0123 | 5.8275 | 5000 | 0.1205 | 0.7619 | 0.7752 | 0.7685 | 0.9770 |
69
+ | 0.0102 | 6.4103 | 5500 | 0.1261 | 0.7576 | 0.7769 | 0.7671 | 0.9762 |
70
+ | 0.0101 | 6.9930 | 6000 | 0.1231 | 0.7699 | 0.7720 | 0.7710 | 0.9770 |
71
+ | 0.0085 | 7.5758 | 6500 | 0.1334 | 0.7546 | 0.7844 | 0.7692 | 0.9764 |
72
+ | 0.0067 | 8.1585 | 7000 | 0.1381 | 0.7640 | 0.7878 | 0.7757 | 0.9768 |
73
+ | 0.0059 | 8.7413 | 7500 | 0.1370 | 0.7650 | 0.7855 | 0.7751 | 0.9770 |
74
+ | 0.0058 | 9.3240 | 8000 | 0.1505 | 0.7585 | 0.7790 | 0.7686 | 0.9768 |
75
+ | 0.0053 | 9.9068 | 8500 | 0.1423 | 0.7604 | 0.7886 | 0.7743 | 0.9772 |
76
+ | 0.0048 | 10.4895 | 9000 | 0.1480 | 0.7566 | 0.7957 | 0.7757 | 0.9770 |
77
+ | 0.0037 | 11.0723 | 9500 | 0.1495 | 0.7602 | 0.7870 | 0.7734 | 0.9765 |
78
+ | 0.0037 | 11.6550 | 10000 | 0.1519 | 0.7652 | 0.7787 | 0.7719 | 0.9773 |
79
+ | 0.0034 | 12.2378 | 10500 | 0.1580 | 0.7654 | 0.7859 | 0.7755 | 0.9771 |
80
+ | 0.0027 | 12.8205 | 11000 | 0.1589 | 0.7686 | 0.7806 | 0.7745 | 0.9770 |
81
+ | 0.0026 | 13.4033 | 11500 | 0.1557 | 0.7749 | 0.7767 | 0.7758 | 0.9773 |
82
+ | 0.0027 | 13.9860 | 12000 | 0.1613 | 0.7587 | 0.7875 | 0.7728 | 0.9769 |
83
+ | 0.002 | 14.5688 | 12500 | 0.1765 | 0.7746 | 0.7767 | 0.7756 | 0.9771 |
84
+ | 0.0023 | 15.1515 | 13000 | 0.1723 | 0.7674 | 0.7898 | 0.7784 | 0.9773 |
85
+ | 0.0024 | 15.7343 | 13500 | 0.1594 | 0.7672 | 0.7856 | 0.7763 | 0.9772 |
86
+ | 0.0015 | 16.3170 | 14000 | 0.1696 | 0.7576 | 0.7927 | 0.7747 | 0.9770 |
87
+ | 0.0019 | 16.8998 | 14500 | 0.1641 | 0.7704 | 0.7857 | 0.7780 | 0.9778 |
88
+ | 0.0016 | 17.4825 | 15000 | 0.1644 | 0.7711 | 0.7896 | 0.7802 | 0.9775 |
89
+ | 0.0017 | 18.0653 | 15500 | 0.1769 | 0.7600 | 0.7938 | 0.7766 | 0.9772 |
90
+ | 0.0014 | 18.6480 | 16000 | 0.1760 | 0.7642 | 0.7821 | 0.7730 | 0.9770 |
91
+ | 0.0013 | 19.2308 | 16500 | 0.1705 | 0.7737 | 0.7824 | 0.7780 | 0.9776 |
92
+ | 0.0013 | 19.8135 | 17000 | 0.1729 | 0.7756 | 0.7875 | 0.7815 | 0.9778 |
93
+ | 0.0012 | 20.3963 | 17500 | 0.1758 | 0.7615 | 0.7935 | 0.7772 | 0.9777 |
94
+ | 0.0012 | 20.9790 | 18000 | 0.1755 | 0.7692 | 0.7966 | 0.7826 | 0.9778 |
95
+ | 0.001 | 21.5618 | 18500 | 0.1719 | 0.7716 | 0.7902 | 0.7808 | 0.9781 |
96
+ | 0.0008 | 22.1445 | 19000 | 0.1739 | 0.7731 | 0.7914 | 0.7821 | 0.9782 |
97
+ | 0.0008 | 22.7273 | 19500 | 0.1754 | 0.7667 | 0.7930 | 0.7796 | 0.9777 |
98
+ | 0.0007 | 23.3100 | 20000 | 0.1837 | 0.7622 | 0.7938 | 0.7777 | 0.9776 |
99
+ | 0.0006 | 23.8928 | 20500 | 0.1783 | 0.7757 | 0.7914 | 0.7835 | 0.9780 |
100
+ | 0.0005 | 24.4755 | 21000 | 0.1831 | 0.7782 | 0.7905 | 0.7843 | 0.9779 |
101
+ | 0.0007 | 25.0583 | 21500 | 0.1799 | 0.7727 | 0.7944 | 0.7834 | 0.9781 |
102
+ | 0.0005 | 25.6410 | 22000 | 0.1828 | 0.7743 | 0.7944 | 0.7842 | 0.9782 |
103
+ | 0.0005 | 26.2238 | 22500 | 0.1850 | 0.7642 | 0.8012 | 0.7823 | 0.9779 |
104
+ | 0.0004 | 26.8065 | 23000 | 0.1868 | 0.7765 | 0.7894 | 0.7829 | 0.9781 |
105
+ | 0.0004 | 27.3893 | 23500 | 0.1915 | 0.7759 | 0.7979 | 0.7867 | 0.9779 |
106
+ | 0.0003 | 27.9720 | 24000 | 0.1880 | 0.7817 | 0.7956 | 0.7886 | 0.9783 |
107
+ | 0.0003 | 28.5548 | 24500 | 0.1886 | 0.7795 | 0.7935 | 0.7864 | 0.9782 |
108
+ | 0.0004 | 29.1375 | 25000 | 0.1892 | 0.7749 | 0.7996 | 0.7870 | 0.9782 |
109
+ | 0.0004 | 29.7203 | 25500 | 0.1899 | 0.7789 | 0.7960 | 0.7874 | 0.9782 |
110
 
111
 
112
  ### Framework versions
config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
  "architectures": [
4
- "DebertaV2ForTokenClassification"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "hidden_act": "gelu",
@@ -33,7 +33,7 @@
33
  "model_type": "deberta-v2",
34
  "norm_rel_ebd": "layer_norm",
35
  "num_attention_heads": 12,
36
- "num_hidden_layers": 12,
37
  "pad_token_id": 0,
38
  "pooler_dropout": 0,
39
  "pooler_hidden_act": "gelu",
 
1
  {
2
  "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
  "architectures": [
4
+ "DebertaForTokenClassification"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "hidden_act": "gelu",
 
33
  "model_type": "deberta-v2",
34
  "norm_rel_ebd": "layer_norm",
35
  "num_attention_heads": 12,
36
+ "num_hidden_layers": 6,
37
  "pad_token_id": 0,
38
  "pooler_dropout": 0,
39
  "pooler_hidden_act": "gelu",
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.8333333333333334, "recall": 0.8163265306122449, "f1": 0.8247422680412372, "accuracy": 0.9868725868725868}, "en_pud": {"precision": 0.8344497607655502, "recall": 0.8111627906976744, "f1": 0.8226415094339622, "accuracy": 0.9822440498677748}, "de_pud": {"precision": 0.8224568138195777, "recall": 0.8248315688161694, "f1": 0.8236424795771263, "accuracy": 0.980591627209226}, "pt_pud": {"precision": 0.876750700280112, "recall": 0.8544131028207461, "f1": 0.8654377880184331, "accuracy": 0.9862434314521297}, "ru_pud": {"precision": 0.7327188940092166, "recall": 0.7673745173745173, "f1": 0.7496463932107497, "accuracy": 0.9746835443037974}, "sv_pud": {"precision": 0.8848780487804878, "recall": 0.8814382896015549, "f1": 0.8831548198636806, "accuracy": 0.988467183895995}, "tl_trg": {"precision": 0.9166666666666666, "recall": 0.9565217391304348, "f1": 0.9361702127659574, "accuracy": 0.9959128065395095}, "tl_ugnayan": {"precision": 0.6341463414634146, "recall": 0.7878787878787878, "f1": 0.7027027027027027, "accuracy": 0.9762989972652689}, "zh_gsd": {"precision": 0.8745046235138706, "recall": 0.863102998696219, "f1": 0.8687664041994752, "accuracy": 0.9816849816849816}, "zh_gsdsimp": {"precision": 0.8824306472919419, "recall": 0.8754914809960681, "f1": 0.8789473684210526, "accuracy": 0.9819347319347319}, "hr_set": {"precision": 0.922752808988764, "recall": 0.9365645046329294, "f1": 0.9296073576229218, "accuracy": 0.990684253915911}, "da_ddt": {"precision": 0.8489208633093526, "recall": 0.7919463087248322, "f1": 0.8194444444444445, "accuracy": 0.9860321261099472}, "en_ewt": {"precision": 0.8647887323943662, "recall": 0.8465073529411765, "f1": 0.8555503947979564, "accuracy": 0.9842212216599594}, "pt_bosque": {"precision": 0.8731009830205541, "recall": 0.8041152263374486, "f1": 0.8371893744644388, "accuracy": 0.9833357484422548}, "sr_set": {"precision": 0.9479289940828403, "recall": 0.9456906729634003, "f1": 0.9468085106382979, "accuracy": 0.9904561772174065}, "sk_snk": {"precision": 0.8122941822173436, "recall": 0.8087431693989071, "f1": 0.8105147864184009, "accuracy": 0.9738536432160804}, "sv_talbanken": {"precision": 0.8511627906976744, "recall": 0.9336734693877551, "f1": 0.8905109489051095, "accuracy": 0.9976444030033862}}
 
1
+ {"ceb_gja": {"precision": 0.5405405405405406, "recall": 0.8163265306122449, "f1": 0.6504065040650406, "accuracy": 0.9675675675675676}, "en_pud": {"precision": 0.751953125, "recall": 0.7162790697674418, "f1": 0.7336827060505003, "accuracy": 0.9749244427653948}, "de_pud": {"precision": 0.7172827172827173, "recall": 0.6910490856592878, "f1": 0.703921568627451, "accuracy": 0.9696216773709625}, "pt_pud": {"precision": 0.7406716417910447, "recall": 0.7224749772520473, "f1": 0.7314601566098572, "accuracy": 0.9754774212842312}, "ru_pud": {"precision": 0.6217712177121771, "recall": 0.6505791505791506, "f1": 0.6358490566037736, "accuracy": 0.9635236373030225}, "sv_pud": {"precision": 0.7769784172661871, "recall": 0.7346938775510204, "f1": 0.7552447552447553, "accuracy": 0.9767246802264625}, "tl_trg": {"precision": 0.5666666666666667, "recall": 0.7391304347826086, "f1": 0.6415094339622641, "accuracy": 0.9768392370572208}, "tl_ugnayan": {"precision": 0.5681818181818182, "recall": 0.7575757575757576, "f1": 0.6493506493506495, "accuracy": 0.9708295350957156}, "zh_gsd": {"precision": 0.7955729166666666, "recall": 0.7966101694915254, "f1": 0.7960912052117263, "accuracy": 0.9736097236097236}, "zh_gsdsimp": {"precision": 0.8023872679045093, "recall": 0.7929226736566186, "f1": 0.7976268951878708, "accuracy": 0.9738594738594739}, "hr_set": {"precision": 0.8584192439862542, "recall": 0.8902352102637205, "f1": 0.874037788663401, "accuracy": 0.9858615004122011}, "da_ddt": {"precision": 0.7463414634146341, "recall": 0.6845637583892618, "f1": 0.7141190198366395, "accuracy": 0.9792477302204928}, "en_ewt": {"precision": 0.7811607992388202, "recall": 0.7545955882352942, "f1": 0.7676484338475924, "accuracy": 0.977009204287365}, "pt_bosque": {"precision": 0.737419945105215, "recall": 0.6633744855967079, "f1": 0.6984402079722704, "accuracy": 0.9723228517606144}, "sr_set": {"precision": 0.8981042654028436, "recall": 0.8949232585596222, "f1": 0.8965109402720284, "accuracy": 0.9852026967866211}, "sk_snk": {"precision": 0.6587837837837838, "recall": 0.639344262295082, "f1": 0.6489184692179701, "accuracy": 0.9532035175879398}, "sv_talbanken": {"precision": 0.7873303167420814, "recall": 0.8877551020408163, "f1": 0.8345323741007193, "accuracy": 0.9968101290670854}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c3a2f61049e0e090d1dd4da96e9cdc6ad79b65ce064280ff833176eca502d217
3
- size 1112921036
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5beb94b86f504592246f390cadd26df9ede33dfd079003c527eceffc41a9b00d
3
+ size 944366708
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:daf95f3e1e83a4a265e6cd703952e96337f1f2904298a81eac5585c40f513ab5
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcaad35d3cbbfc37fe3b7172eb602f04a6a76383dbac8f2183f05cd5fdc75e15
3
  size 5304